Geometric Hyperplanes of the Near Hexagon L3 × GQ(2, 2) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Metod Saniga, Péter Lévay, Michel Planat, Petr Pracna

ABSTRACT

Having in mind their potential quantum physical applications, we classify all geometric hyperplanes of the near hexagon that is a direct product of a line of size three and the generalized quadrangle of order two. There are eight different kinds of them, totalling to 1,023 = 210 − 1 = |PG(9, 2)|, and they form two distinct families intricately related with the points and lines of the Veldkamp space of the quadrangle in question. More... »

PAGES

93

References to SciGraph publications

  • 1994-03. Near polygons and Fischer spaces in GEOMETRIAE DEDICATA
  • 2008-06. Projective ring line encompassing two-qubits in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2002-10. The Hyperplanes of the M24 Near Polygon in GRAPHS AND COMBINATORICS
  • 2010-05. Three-Qubit Entangled Embeddings of CPT and Dirac Groups within E8 Weyl Group in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2006. Near Polygons in NONE
  • Journal

    TITLE

    Letters in Mathematical Physics

    ISSUE

    1

    VOLUME

    91

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-009-0362-z

    DOI

    http://dx.doi.org/10.1007/s11005-009-0362-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007641523


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bielefeld University", 
              "id": "https://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Astronomical Institute, Slovak Academy of Sciences, 05960, Tatransk\u00e1 Lomnica, Slovak Republic", 
                "Center for Interdisciplinary Research (ZiF), University of Bielefeld, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saniga", 
            "givenName": "Metod", 
            "id": "sg:person.015610617470.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bielefeld University", 
              "id": "https://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, 1521, Budapest, Hungary", 
                "Center for Interdisciplinary Research (ZiF), University of Bielefeld, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00e9vay", 
            "givenName": "P\u00e9ter", 
            "id": "sg:person.014267404472.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267404472.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bielefeld University", 
              "id": "https://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Institut FEMTO-ST, CNRS, 32 Avenue de l\u2019Observatoire, 25044, Besan\u00e7on Cedex, France", 
                "Center for Interdisciplinary Research (ZiF), University of Bielefeld, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Planat", 
            "givenName": "Michel", 
            "id": "sg:person.016076407625.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bielefeld University", 
              "id": "https://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "J. Heyrovsk\u00fd Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolej\u0161kova 3, 18223, Prague 8, Czech Republic", 
                "Center for Interdisciplinary Research (ZiF), University of Bielefeld, 33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pracna", 
            "givenName": "Petr", 
            "id": "sg:person.012473732565.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012473732565.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0195-6698(87)80009-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003410908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.084036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011459346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.084036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011459346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01264034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017303284", 
              "https://doi.org/10.1007/bf01264034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01264034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017303284", 
              "https://doi.org/10.1007/bf01264034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.disc.2007.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017327152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.disc.2007.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020156642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003730200031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014674", 
              "https://doi.org/10.1007/s003730200031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00927879408824875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033514333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejc.2006.05.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033624818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/forum.2008.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036796276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-010-0283-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037672982", 
              "https://doi.org/10.1007/s10773-010-0283-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-010-0283-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037672982", 
              "https://doi.org/10.1007/s10773-010-0283-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-008-0076-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041700739", 
              "https://doi.org/10.1007/s11232-008-0076-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-7553-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045354312", 
              "https://doi.org/10.1007/978-3-7643-7553-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-7553-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045354312", 
              "https://doi.org/10.1007/978-3-7643-7553-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10586458.2005.10128922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052388015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3842/sigma.2007.075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071451730"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-01", 
        "datePublishedReg": "2010-01-01", 
        "description": "Having in mind their potential quantum physical applications, we classify all geometric hyperplanes of the near hexagon that is a direct product of a line of size three and the generalized quadrangle of order two. There are eight different kinds of them, totalling to 1,023 = 210 \u2212 1 = |PG(9, 2)|, and they form two distinct families intricately related with the points and lines of the Veldkamp space of the quadrangle in question.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11005-009-0362-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "Geometric Hyperplanes of the Near Hexagon L3 \u00d7 GQ(2, 2)", 
        "pagination": "93", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2466242ee78f03b5620d2cc08851242ca0bd5ba6291657fd137a6de4c1051d66"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-009-0362-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007641523"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-009-0362-z", 
          "https://app.dimensions.ai/details/publication/pub.1007641523"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11005-009-0362-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-009-0362-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-009-0362-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-009-0362-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-009-0362-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-009-0362-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N87cc05b4ee024afab6ff76ede5a036f5
    4 schema:citation sg:pub.10.1007/978-3-7643-7553-9
    5 sg:pub.10.1007/bf01264034
    6 sg:pub.10.1007/s003730200031
    7 sg:pub.10.1007/s10773-010-0283-8
    8 sg:pub.10.1007/s11232-008-0076-x
    9 https://doi.org/10.1016/j.disc.2007.10.028
    10 https://doi.org/10.1016/j.disc.2007.12.011
    11 https://doi.org/10.1016/j.ejc.2006.05.015
    12 https://doi.org/10.1016/s0195-6698(87)80009-4
    13 https://doi.org/10.1080/00927879408824875
    14 https://doi.org/10.1080/10586458.2005.10128922
    15 https://doi.org/10.1103/physrevd.79.084036
    16 https://doi.org/10.1515/forum.2008.012
    17 https://doi.org/10.3842/sigma.2007.075
    18 schema:datePublished 2010-01
    19 schema:datePublishedReg 2010-01-01
    20 schema:description Having in mind their potential quantum physical applications, we classify all geometric hyperplanes of the near hexagon that is a direct product of a line of size three and the generalized quadrangle of order two. There are eight different kinds of them, totalling to 1,023 = 210 − 1 = |PG(9, 2)|, and they form two distinct families intricately related with the points and lines of the Veldkamp space of the quadrangle in question.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N0da3bc1c61c647b0befaad4ca64d0450
    25 N2a5f6f6d214440cebc70f2e49904c179
    26 sg:journal.1327584
    27 schema:name Geometric Hyperplanes of the Near Hexagon L3 × GQ(2, 2)
    28 schema:pagination 93
    29 schema:productId N15ac0529b68a4b82a9e370e73460899d
    30 N85a0c01eceb541fe8e6cfe2bfc0a82f3
    31 Nb49bbb2b024449818522f57e86e25bd5
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007641523
    33 https://doi.org/10.1007/s11005-009-0362-z
    34 schema:sdDatePublished 2019-04-11T09:39
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Ncb915f5532f24a46a12d84cc0ba2c4d7
    37 schema:url http://link.springer.com/10.1007%2Fs11005-009-0362-z
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N0231a5d2a646446d9d4cc7a08a9f401d rdf:first sg:person.014267404472.92
    42 rdf:rest Na5d86befe5204c268aaa486e1b3b0d02
    43 N0da3bc1c61c647b0befaad4ca64d0450 schema:volumeNumber 91
    44 rdf:type schema:PublicationVolume
    45 N15ac0529b68a4b82a9e370e73460899d schema:name doi
    46 schema:value 10.1007/s11005-009-0362-z
    47 rdf:type schema:PropertyValue
    48 N234f18536acb4c9b8fa543d7dc37c083 rdf:first sg:person.012473732565.40
    49 rdf:rest rdf:nil
    50 N2a5f6f6d214440cebc70f2e49904c179 schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 N85a0c01eceb541fe8e6cfe2bfc0a82f3 schema:name dimensions_id
    53 schema:value pub.1007641523
    54 rdf:type schema:PropertyValue
    55 N87cc05b4ee024afab6ff76ede5a036f5 rdf:first sg:person.015610617470.96
    56 rdf:rest N0231a5d2a646446d9d4cc7a08a9f401d
    57 Na5d86befe5204c268aaa486e1b3b0d02 rdf:first sg:person.016076407625.27
    58 rdf:rest N234f18536acb4c9b8fa543d7dc37c083
    59 Nb49bbb2b024449818522f57e86e25bd5 schema:name readcube_id
    60 schema:value 2466242ee78f03b5620d2cc08851242ca0bd5ba6291657fd137a6de4c1051d66
    61 rdf:type schema:PropertyValue
    62 Ncb915f5532f24a46a12d84cc0ba2c4d7 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1327584 schema:issn 0377-9017
    71 1573-0530
    72 schema:name Letters in Mathematical Physics
    73 rdf:type schema:Periodical
    74 sg:person.012473732565.40 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
    75 schema:familyName Pracna
    76 schema:givenName Petr
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012473732565.40
    78 rdf:type schema:Person
    79 sg:person.014267404472.92 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
    80 schema:familyName Lévay
    81 schema:givenName Péter
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267404472.92
    83 rdf:type schema:Person
    84 sg:person.015610617470.96 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
    85 schema:familyName Saniga
    86 schema:givenName Metod
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015610617470.96
    88 rdf:type schema:Person
    89 sg:person.016076407625.27 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
    90 schema:familyName Planat
    91 schema:givenName Michel
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076407625.27
    93 rdf:type schema:Person
    94 sg:pub.10.1007/978-3-7643-7553-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045354312
    95 https://doi.org/10.1007/978-3-7643-7553-9
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf01264034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017303284
    98 https://doi.org/10.1007/bf01264034
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s003730200031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014674
    101 https://doi.org/10.1007/s003730200031
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10773-010-0283-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037672982
    104 https://doi.org/10.1007/s10773-010-0283-8
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11232-008-0076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041700739
    107 https://doi.org/10.1007/s11232-008-0076-x
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.disc.2007.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020156642
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.disc.2007.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017327152
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.ejc.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033624818
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0195-6698(87)80009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003410908
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1080/00927879408824875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033514333
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1080/10586458.2005.10128922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052388015
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevd.79.084036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011459346
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1515/forum.2008.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036796276
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.3842/sigma.2007.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071451730
    126 rdf:type schema:CreativeWork
    127 https://www.grid.ac/institutes/grid.7491.b schema:alternateName Bielefeld University
    128 schema:name Astronomical Institute, Slovak Academy of Sciences, 05960, Tatranská Lomnica, Slovak Republic
    129 Center for Interdisciplinary Research (ZiF), University of Bielefeld, 33615, Bielefeld, Germany
    130 Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, 1521, Budapest, Hungary
    131 Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire, 25044, Besançon Cedex, France
    132 J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223, Prague 8, Czech Republic
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...