Inequalities for Quantum Skew Information View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09-26

AUTHORS

Koenraad Audenaert, Liang Cai, Frank Hansen

ABSTRACT

We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner–Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner–Yanase–Dyson skew informations. More... »

PAGES

135-146

References to SciGraph publications

  • 1996-10. On the Riemannian metric of α-entropies of density matrices in LETTERS IN MATHEMATICAL PHYSICS
  • 2007-01-18. The Wigner-Yanase Entropy is not Subadditive in JOURNAL OF STATISTICAL PHYSICS
  • 1982-09. Jensen's inequality for operators and Löwner's theorem in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-008-0269-0

    DOI

    http://dx.doi.org/10.1007/s11005-008-0269-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012075324


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Royal Holloway, University of London, Egham Hill, TW20 0EX, Egham, UK", 
              "id": "http://www.grid.ac/institutes/grid.4970.a", 
              "name": [
                "Mathematics Department, Royal Holloway, University of London, Egham Hill, TW20 0EX, Egham, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Audenaert", 
            "givenName": "Koenraad", 
            "id": "sg:person.010510633016.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010510633016.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100080, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.458463.8", 
              "name": [
                "Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100080, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Liang", 
            "id": "sg:person.011421464347.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011421464347.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Economics, University of Copenhagen, Studiestraede 6, 1455, Copenhagen K, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "Department of Economics, University of Copenhagen, Studiestraede 6, 1455, Copenhagen K, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hansen", 
            "givenName": "Frank", 
            "id": "sg:person.016076433567.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076433567.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10955-006-9265-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032646258", 
              "https://doi.org/10.1007/s10955-006-9265-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00398324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051723227", 
              "https://doi.org/10.1007/bf00398324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01450679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052884627", 
              "https://doi.org/10.1007/bf01450679"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-09-26", 
        "datePublishedReg": "2008-09-26", 
        "description": "We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner\u2013Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner\u2013Yanase\u2013Dyson skew informations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11005-008-0269-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "85"
          }
        ], 
        "keywords": [
          "skew information", 
          "quantum Fisher information", 
          "Wigner-Yanase skew information", 
          "quantum skew information", 
          "quantum variance", 
          "Fisher information", 
          "Dyson skew information", 
          "Wigner-Yanase", 
          "order structure", 
          "lattice", 
          "structure", 
          "information inequalities", 
          "new inequalities", 
          "number of authors", 
          "information", 
          "set", 
          "function", 
          "respect", 
          "relation", 
          "number", 
          "inequality", 
          "matrix inequalities", 
          "authors", 
          "set of functions", 
          "basic inequalities", 
          "determinant inequalities", 
          "order relation", 
          "variance", 
          "involution", 
          "quantum information inequalities", 
          "multi-operator matrix inequalities", 
          "Robertson type determinant inequalities", 
          "type determinant inequalities", 
          "maximal skew information"
        ], 
        "name": "Inequalities for Quantum Skew Information", 
        "pagination": "135-146", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012075324"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-008-0269-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-008-0269-0", 
          "https://app.dimensions.ai/details/publication/pub.1012075324"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_462.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11005-008-0269-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-008-0269-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-008-0269-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-008-0269-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-008-0269-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      62 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-008-0269-0 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N4d6d1b84d2c5441f94b5cb1555c2f934
    4 schema:citation sg:pub.10.1007/bf00398324
    5 sg:pub.10.1007/bf01450679
    6 sg:pub.10.1007/s10955-006-9265-x
    7 schema:datePublished 2008-09-26
    8 schema:datePublishedReg 2008-09-26
    9 schema:description We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner–Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner–Yanase–Dyson skew informations.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N2c1b363c34c24bbe8365787081a5210a
    14 Nf905c1ab6a14462dbcb0cb03ad24427a
    15 sg:journal.1327584
    16 schema:keywords Dyson skew information
    17 Fisher information
    18 Robertson type determinant inequalities
    19 Wigner-Yanase
    20 Wigner-Yanase skew information
    21 authors
    22 basic inequalities
    23 determinant inequalities
    24 function
    25 inequality
    26 information
    27 information inequalities
    28 involution
    29 lattice
    30 matrix inequalities
    31 maximal skew information
    32 multi-operator matrix inequalities
    33 new inequalities
    34 number
    35 number of authors
    36 order relation
    37 order structure
    38 quantum Fisher information
    39 quantum information inequalities
    40 quantum skew information
    41 quantum variance
    42 relation
    43 respect
    44 set
    45 set of functions
    46 skew information
    47 structure
    48 type determinant inequalities
    49 variance
    50 schema:name Inequalities for Quantum Skew Information
    51 schema:pagination 135-146
    52 schema:productId N9625a90601c64e64958f7540cb503e21
    53 Nb3a2805ec8714b3fbe0736d5183b006b
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075324
    55 https://doi.org/10.1007/s11005-008-0269-0
    56 schema:sdDatePublished 2021-12-01T19:20
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N2665b96e505d40d9bf5960381163a38c
    59 schema:url https://doi.org/10.1007/s11005-008-0269-0
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N2665b96e505d40d9bf5960381163a38c schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N2c1b363c34c24bbe8365787081a5210a schema:issueNumber 2-3
    66 rdf:type schema:PublicationIssue
    67 N4c879f2077664ddc87b6676b5b542d61 rdf:first sg:person.011421464347.93
    68 rdf:rest N9a6b5821871c4fe18c76e67e1db295ee
    69 N4d6d1b84d2c5441f94b5cb1555c2f934 rdf:first sg:person.010510633016.55
    70 rdf:rest N4c879f2077664ddc87b6676b5b542d61
    71 N9625a90601c64e64958f7540cb503e21 schema:name dimensions_id
    72 schema:value pub.1012075324
    73 rdf:type schema:PropertyValue
    74 N9a6b5821871c4fe18c76e67e1db295ee rdf:first sg:person.016076433567.56
    75 rdf:rest rdf:nil
    76 Nb3a2805ec8714b3fbe0736d5183b006b schema:name doi
    77 schema:value 10.1007/s11005-008-0269-0
    78 rdf:type schema:PropertyValue
    79 Nf905c1ab6a14462dbcb0cb03ad24427a schema:volumeNumber 85
    80 rdf:type schema:PublicationVolume
    81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Quantum Physics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1327584 schema:issn 0377-9017
    88 1573-0530
    89 schema:name Letters in Mathematical Physics
    90 schema:publisher Springer Nature
    91 rdf:type schema:Periodical
    92 sg:person.010510633016.55 schema:affiliation grid-institutes:grid.4970.a
    93 schema:familyName Audenaert
    94 schema:givenName Koenraad
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010510633016.55
    96 rdf:type schema:Person
    97 sg:person.011421464347.93 schema:affiliation grid-institutes:grid.458463.8
    98 schema:familyName Cai
    99 schema:givenName Liang
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011421464347.93
    101 rdf:type schema:Person
    102 sg:person.016076433567.56 schema:affiliation grid-institutes:grid.5254.6
    103 schema:familyName Hansen
    104 schema:givenName Frank
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016076433567.56
    106 rdf:type schema:Person
    107 sg:pub.10.1007/bf00398324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051723227
    108 https://doi.org/10.1007/bf00398324
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01450679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052884627
    111 https://doi.org/10.1007/bf01450679
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s10955-006-9265-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032646258
    114 https://doi.org/10.1007/s10955-006-9265-x
    115 rdf:type schema:CreativeWork
    116 grid-institutes:grid.458463.8 schema:alternateName Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100080, Beijing, China
    117 schema:name Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100080, Beijing, China
    118 rdf:type schema:Organization
    119 grid-institutes:grid.4970.a schema:alternateName Mathematics Department, Royal Holloway, University of London, Egham Hill, TW20 0EX, Egham, UK
    120 schema:name Mathematics Department, Royal Holloway, University of London, Egham Hill, TW20 0EX, Egham, UK
    121 rdf:type schema:Organization
    122 grid-institutes:grid.5254.6 schema:alternateName Department of Economics, University of Copenhagen, Studiestraede 6, 1455, Copenhagen K, Denmark
    123 schema:name Department of Economics, University of Copenhagen, Studiestraede 6, 1455, Copenhagen K, Denmark
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...