The Potts Model with Countable Set of Spin Values on a Cayley Tree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01-06

AUTHORS

N. N. Ganikhodjaev, U. A. Rozikov

ABSTRACT

We consider a nearest-neighbor Potts model, with countable spin values 0,1,..., and non zero external field, on a Cayley tree of order k (with k+1 neighbors). We study translation-invariant ‘splitting’ Gibbs measures. We reduce the problem to the description of the solutions of some infinite system of equations. For any k≥ 1 and any fixed probability measure ν with ν (i)>0 on the set of all non negative integer numbers Φ={0,1,...} we show that the set of translation-invariant splitting Gibbs measures contains at most one point, independently on parameters of the Potts model with countable set of spin values on Cayley tree. Also we give description of the class of measures ν on Φ such that with respect to each element of this class our infinite system of equations has unique solution {ai, i=1,2,...}, where a ∈(0,1). More... »

PAGES

99-109

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11005-005-0032-8

DOI

http://dx.doi.org/10.1007/s11005-005-0032-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038943181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "International Islamic University Malaysia, 53100, Kuala Lumpur, Malaysia", 
            "Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganikhodjaev", 
        "givenName": "N. N.", 
        "id": "sg:person.010656773611.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656773611.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozikov", 
        "givenName": "U. A.", 
        "id": "sg:person.014213263324.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01208713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022605478", 
          "https://doi.org/10.1007/bf01208713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:ques.0000021149.43343.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014082630", 
          "https://doi.org/10.1023/b:ques.0000021149.43343.05"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02179399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029115716", 
          "https://doi.org/10.1007/bf02179399"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01-06", 
    "datePublishedReg": "2006-01-06", 
    "description": "We consider a nearest-neighbor Potts model, with countable spin values 0,1,..., and non zero external field, on a Cayley tree of order k (with k+1 neighbors). We study translation-invariant \u2018splitting\u2019 Gibbs measures. We reduce the problem to the description of the solutions of some infinite system of equations. For any k\u2265 1 and any fixed probability measure \u03bd with \u03bd (i)>0 on the set of all non negative integer numbers \u03a6={0,1,...} we show that the set of translation-invariant splitting Gibbs measures contains at most one point, independently on parameters of the Potts model with countable set of spin values on Cayley tree. Also we give description of the class of measures \u03bd on \u03a6 such that with respect to each element of this class our infinite system of equations has unique solution {ai, i=1,2,...}, where a \u2208(0,1).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11005-005-0032-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327584", 
        "issn": [
          "0377-9017", 
          "1573-0530"
        ], 
        "name": "Letters in Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "keywords": [
      "Potts model", 
      "infinite system", 
      "nearest-neighbor Potts model", 
      "Gibbs measures", 
      "countable set", 
      "measure \u03bd", 
      "Cayley tree", 
      "probability measure \u03bd", 
      "negative integer numbers", 
      "unique solution", 
      "order k", 
      "equations", 
      "integer number", 
      "splitting Gibbs measures", 
      "spin values", 
      "set", 
      "class", 
      "solution", 
      "external field", 
      "model", 
      "problem", 
      "description", 
      "system", 
      "parameters", 
      "point", 
      "trees", 
      "respect", 
      "values", 
      "measures", 
      "field", 
      "number", 
      "splitting", 
      "elements", 
      "countable spin values", 
      "non negative integer numbers", 
      "translation-invariant splitting Gibbs measures"
    ], 
    "name": "The Potts Model with Countable Set of Spin Values on a Cayley Tree", 
    "pagination": "99-109", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038943181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11005-005-0032-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11005-005-0032-8", 
      "https://app.dimensions.ai/details/publication/pub.1038943181"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_429.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11005-005-0032-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-005-0032-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-005-0032-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-005-0032-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-005-0032-8'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      64 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11005-005-0032-8 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N774bb7e6ee374a379e80e661e81126d5
4 schema:citation sg:pub.10.1007/bf01208713
5 sg:pub.10.1007/bf02179399
6 sg:pub.10.1023/b:ques.0000021149.43343.05
7 schema:datePublished 2006-01-06
8 schema:datePublishedReg 2006-01-06
9 schema:description We consider a nearest-neighbor Potts model, with countable spin values 0,1,..., and non zero external field, on a Cayley tree of order k (with k+1 neighbors). We study translation-invariant ‘splitting’ Gibbs measures. We reduce the problem to the description of the solutions of some infinite system of equations. For any k≥ 1 and any fixed probability measure ν with ν (i)>0 on the set of all non negative integer numbers Φ={0,1,...} we show that the set of translation-invariant splitting Gibbs measures contains at most one point, independently on parameters of the Potts model with countable set of spin values on Cayley tree. Also we give description of the class of measures ν on Φ such that with respect to each element of this class our infinite system of equations has unique solution {ai, i=1,2,...}, where a ∈(0,1).
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N595cc893686041779917f752c7b1f429
14 N99c12ab4ebe44ee2ac67bdcfafce9473
15 sg:journal.1327584
16 schema:keywords Cayley tree
17 Gibbs measures
18 Potts model
19 class
20 countable set
21 countable spin values
22 description
23 elements
24 equations
25 external field
26 field
27 infinite system
28 integer number
29 measure ν
30 measures
31 model
32 nearest-neighbor Potts model
33 negative integer numbers
34 non negative integer numbers
35 number
36 order k
37 parameters
38 point
39 probability measure ν
40 problem
41 respect
42 set
43 solution
44 spin values
45 splitting
46 splitting Gibbs measures
47 system
48 translation-invariant splitting Gibbs measures
49 trees
50 unique solution
51 values
52 schema:name The Potts Model with Countable Set of Spin Values on a Cayley Tree
53 schema:pagination 99-109
54 schema:productId N1dcd1cbef57742e4acde253d72cb8eeb
55 Nb0b78dcf8a3344818acecb3a4d4f8110
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038943181
57 https://doi.org/10.1007/s11005-005-0032-8
58 schema:sdDatePublished 2022-01-01T18:16
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nb1cd526d47634e71aa9fce31d21c1306
61 schema:url https://doi.org/10.1007/s11005-005-0032-8
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1dcd1cbef57742e4acde253d72cb8eeb schema:name doi
66 schema:value 10.1007/s11005-005-0032-8
67 rdf:type schema:PropertyValue
68 N20848f65381a42cba9e5d668d09995a3 rdf:first sg:person.014213263324.92
69 rdf:rest rdf:nil
70 N595cc893686041779917f752c7b1f429 schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 N774bb7e6ee374a379e80e661e81126d5 rdf:first sg:person.010656773611.62
73 rdf:rest N20848f65381a42cba9e5d668d09995a3
74 N99c12ab4ebe44ee2ac67bdcfafce9473 schema:volumeNumber 75
75 rdf:type schema:PublicationVolume
76 Nb0b78dcf8a3344818acecb3a4d4f8110 schema:name dimensions_id
77 schema:value pub.1038943181
78 rdf:type schema:PropertyValue
79 Nb1cd526d47634e71aa9fce31d21c1306 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 sg:journal.1327584 schema:issn 0377-9017
88 1573-0530
89 schema:name Letters in Mathematical Physics
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.010656773611.62 schema:affiliation grid-institutes:None
93 schema:familyName Ganikhodjaev
94 schema:givenName N. N.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656773611.62
96 rdf:type schema:Person
97 sg:person.014213263324.92 schema:affiliation grid-institutes:None
98 schema:familyName Rozikov
99 schema:givenName U. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
101 rdf:type schema:Person
102 sg:pub.10.1007/bf01208713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605478
103 https://doi.org/10.1007/bf01208713
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf02179399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029115716
106 https://doi.org/10.1007/bf02179399
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/b:ques.0000021149.43343.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014082630
109 https://doi.org/10.1023/b:ques.0000021149.43343.05
110 rdf:type schema:CreativeWork
111 grid-institutes:None schema:alternateName Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan
112 schema:name Institute of Mathematics, 29 F. Hodjaev str., 700125, Tashkent, Uzbekistan
113 International Islamic University Malaysia, 53100, Kuala Lumpur, Malaysia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...