Use of Gestalt Theory and Random Sets for Automatic Detection of Linear Geological Features View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04

AUTHORS

Dafni Sidiropoulou Velidou, Valentyn A. Tolpekin, Alfred Stein, Tsehaie Woldai

ABSTRACT

This paper presents the calibration and application of a Gestalt-based line segment method for automatic geological lineament detection from remote sensing images. This method involves estimation of the scale factor, the angle tolerance and a threshold on the false alarm rate. It identifies major lineaments as objects characterized by two edges on the image, which appear as transitions from dark to bright and vice versa. These objects were modelled as random sets with parameters drawn from their distributions. Following the geometry of detected segments, a novel validation method assesses the accuracy with respect to a linear vector reference. The methodology was applied to a study area in Kenya where lineaments are prominent in the landscape and are well identifiable from an ASTER image. Error rates were based on distance and local orientation, and the study showed that the existence and size of the objects were sensitive to parameter variation. False detection rate and missing detection rate were both equal to 0.50, which is better than values equal to 0.65 and 0.63, observed using the Canny edge detection. Modelling the uncertainty of geological lineaments with random sets further showed that no core set is formed, indicating that there is an inherent uncertainty in their existence and position, and that the variance is relatively high. Comparing the test area with four areas in the same region showed similar results. Despite some shortcomings in identifying full lineaments from partially observed lineaments, it is concluded that the procedure in this paper is well able to automatically extract lineaments from a remote sensing image and validate their existence. More... »

PAGES

249-276

References to SciGraph publications

  • 2010-05. Lineament mapping and its application in landslide hazard assessment: a review in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2001-05. Edge Detection by Helmholtz Principle in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2012-06. Comparative evaluation of linear edge detection methods in PATTERN RECOGNITION AND IMAGE ANALYSIS
  • 2005. Expectations of Random Sets in THEORY OF RANDOM SETS
  • 2000-10. Meaningful Alignments in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11004-015-9584-z

    DOI

    http://dx.doi.org/10.1007/s11004-015-9584-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002434184


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
              "id": "https://www.grid.ac/institutes/grid.466856.f", 
              "name": [
                "Faculty of Geoinformation Science and Earth Observation ITC, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sidiropoulou Velidou", 
            "givenName": "Dafni", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
              "id": "https://www.grid.ac/institutes/grid.466856.f", 
              "name": [
                "Faculty of Geoinformation Science and Earth Observation ITC, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tolpekin", 
            "givenName": "Valentyn A.", 
            "id": "sg:person.015147605677.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147605677.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Institute for Geo-Information Science and Earth Observation", 
              "id": "https://www.grid.ac/institutes/grid.466856.f", 
              "name": [
                "Faculty of Geoinformation Science and Earth Observation ITC, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stein", 
            "givenName": "Alfred", 
            "id": "sg:person.013105002112.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of the Witwatersrand", 
              "id": "https://www.grid.ac/institutes/grid.11951.3d", 
              "name": [
                "School of Geosciences, University of the Witwatersrand, P O WITS, 2050, Johannesburg, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woldai", 
            "givenName": "Tsehaie", 
            "id": "sg:person.015712700500.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712700500.85"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patrec.2003.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003227005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2003.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003227005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026593302236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005830802", 
              "https://doi.org/10.1023/a:1026593302236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1130/gsab-15-483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013334265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enggeo.2004.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013831872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2013.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015131650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.213122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017008743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1054661812020058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017770624", 
              "https://doi.org/10.1134/s1054661812020058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.627699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018929127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jafrearsci.2006.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020736627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-009-0255-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021453787", 
              "https://doi.org/10.1007/s10064-009-0255-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-009-0255-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021453787", 
              "https://doi.org/10.1007/s10064-009-0255-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jphysparis.2003.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022895213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160410001705088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029137742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/1-84628-150-4_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029567500", 
              "https://doi.org/10.1007/1-84628-150-4_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rse.2004.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030538886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01431160600658172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031536696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-3004(95)00042-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031644896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.isprsjprs.2013.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035025764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-1951(02)00415-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035317229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-1951(02)00415-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035317229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.isprsjprs.2013.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035989618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.isprsjprs.2010.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040246883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2004.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044821884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.asr.2012.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2007.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045214527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011290230196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049803643", 
              "https://doi.org/10.1023/a:1011290230196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2010.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050933922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1130/0016-7606(1976)87<1463:lllspn>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051121843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-3004(94)90073-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051795424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0098-3004(94)90073-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051795424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.1990.572949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061608420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tgrs.2011.2109064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061611754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.1986.4767808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.1986.4767851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajeassp.2009.476.480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071457264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5201/ipol.2012.gjmr-lsd", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072705424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7763/ijcte.2009.v1.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074032448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/igarss.2002.1027154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094375102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12681/bgsg.16538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105797916"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "This paper presents the calibration and application of a Gestalt-based line segment method for automatic geological lineament detection from remote sensing images. This method involves estimation of the scale factor, the angle tolerance and a threshold on the false alarm rate. It identifies major lineaments as objects characterized by two edges on the image, which appear as transitions from dark to bright and vice versa. These objects were modelled as random sets with parameters drawn from their distributions. Following the geometry of detected segments, a novel validation method assesses the accuracy with respect to a linear vector reference. The methodology was applied to a study area in Kenya where lineaments are prominent in the landscape and are well identifiable from an ASTER image. Error rates were based on distance and local orientation, and the study showed that the existence and size of the objects were sensitive to parameter variation. False detection rate and missing detection rate were both equal to 0.50, which is better than values equal to 0.65 and 0.63, observed using the Canny edge detection. Modelling the uncertainty of geological lineaments with random sets further showed that no core set is formed, indicating that there is an inherent uncertainty in their existence and position, and that the variance is relatively high. Comparing the test area with four areas in the same region showed similar results. Despite some shortcomings in identifying full lineaments from partially observed lineaments, it is concluded that the procedure in this paper is well able to automatically extract lineaments from a remote sensing image and validate their existence.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11004-015-9584-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039818", 
            "issn": [
              "1874-8961", 
              "1874-8953"
            ], 
            "name": "Mathematical Geosciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Use of Gestalt Theory and Random Sets for Automatic Detection of Linear Geological Features", 
        "pagination": "249-276", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b96e2f01b1a21f3ffdd28fdc607c940a54f415e2962834fb182231f478a445b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11004-015-9584-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002434184"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11004-015-9584-z", 
          "https://app.dimensions.ai/details/publication/pub.1002434184"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11004-015-9584-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11004-015-9584-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11004-015-9584-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11004-015-9584-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11004-015-9584-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11004-015-9584-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nf904c75b80cd476e986be1a1e413dc6e
    4 schema:citation sg:pub.10.1007/1-84628-150-4_2
    5 sg:pub.10.1007/s10064-009-0255-5
    6 sg:pub.10.1023/a:1011290230196
    7 sg:pub.10.1023/a:1026593302236
    8 sg:pub.10.1134/s1054661812020058
    9 https://doi.org/10.1016/0098-3004(94)90073-6
    10 https://doi.org/10.1016/0098-3004(95)00042-7
    11 https://doi.org/10.1016/j.asr.2012.10.004
    12 https://doi.org/10.1016/j.cageo.2007.05.010
    13 https://doi.org/10.1016/j.cageo.2010.01.009
    14 https://doi.org/10.1016/j.cageo.2013.03.019
    15 https://doi.org/10.1016/j.enggeo.2004.10.004
    16 https://doi.org/10.1016/j.isprsjprs.2010.06.001
    17 https://doi.org/10.1016/j.isprsjprs.2013.02.009
    18 https://doi.org/10.1016/j.isprsjprs.2013.06.009
    19 https://doi.org/10.1016/j.jafrearsci.2006.06.007
    20 https://doi.org/10.1016/j.jphysparis.2003.09.006
    21 https://doi.org/10.1016/j.patrec.2003.08.007
    22 https://doi.org/10.1016/j.patrec.2004.11.005
    23 https://doi.org/10.1016/j.rse.2004.08.013
    24 https://doi.org/10.1016/s0040-1951(02)00415-8
    25 https://doi.org/10.1080/01431160410001705088
    26 https://doi.org/10.1080/01431160600658172
    27 https://doi.org/10.1109/igarss.2002.1027154
    28 https://doi.org/10.1109/tgrs.1990.572949
    29 https://doi.org/10.1109/tgrs.2011.2109064
    30 https://doi.org/10.1109/tpami.1986.4767808
    31 https://doi.org/10.1109/tpami.1986.4767851
    32 https://doi.org/10.1117/12.213122
    33 https://doi.org/10.1117/12.627699
    34 https://doi.org/10.1130/0016-7606(1976)87<1463:lllspn>2.0.co;2
    35 https://doi.org/10.1130/gsab-15-483
    36 https://doi.org/10.12681/bgsg.16538
    37 https://doi.org/10.3844/ajeassp.2009.476.480
    38 https://doi.org/10.5201/ipol.2012.gjmr-lsd
    39 https://doi.org/10.7763/ijcte.2009.v1.100
    40 schema:datePublished 2015-04
    41 schema:datePublishedReg 2015-04-01
    42 schema:description This paper presents the calibration and application of a Gestalt-based line segment method for automatic geological lineament detection from remote sensing images. This method involves estimation of the scale factor, the angle tolerance and a threshold on the false alarm rate. It identifies major lineaments as objects characterized by two edges on the image, which appear as transitions from dark to bright and vice versa. These objects were modelled as random sets with parameters drawn from their distributions. Following the geometry of detected segments, a novel validation method assesses the accuracy with respect to a linear vector reference. The methodology was applied to a study area in Kenya where lineaments are prominent in the landscape and are well identifiable from an ASTER image. Error rates were based on distance and local orientation, and the study showed that the existence and size of the objects were sensitive to parameter variation. False detection rate and missing detection rate were both equal to 0.50, which is better than values equal to 0.65 and 0.63, observed using the Canny edge detection. Modelling the uncertainty of geological lineaments with random sets further showed that no core set is formed, indicating that there is an inherent uncertainty in their existence and position, and that the variance is relatively high. Comparing the test area with four areas in the same region showed similar results. Despite some shortcomings in identifying full lineaments from partially observed lineaments, it is concluded that the procedure in this paper is well able to automatically extract lineaments from a remote sensing image and validate their existence.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N6838978b931a45aea3b3cdae40922579
    47 Ndd61f56aac0445d8804fe235de7e5cd6
    48 sg:journal.1039818
    49 schema:name Use of Gestalt Theory and Random Sets for Automatic Detection of Linear Geological Features
    50 schema:pagination 249-276
    51 schema:productId N0571adafb97b499084712f199c0b16d4
    52 Nf13be6e8f71c4211b470014ffc6a5e92
    53 Nfa4426e277984efe9063de3e23d2943d
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002434184
    55 https://doi.org/10.1007/s11004-015-9584-z
    56 schema:sdDatePublished 2019-04-11T13:09
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Na51c4345ef14473aae59d909a1ee05cd
    59 schema:url http://link.springer.com/10.1007%2Fs11004-015-9584-z
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N0571adafb97b499084712f199c0b16d4 schema:name dimensions_id
    64 schema:value pub.1002434184
    65 rdf:type schema:PropertyValue
    66 N6838978b931a45aea3b3cdae40922579 schema:volumeNumber 47
    67 rdf:type schema:PublicationVolume
    68 N9fa26c2128534c4f9043fdf5b8148b45 rdf:first sg:person.015147605677.28
    69 rdf:rest Naffd011a8d4641e9bec37daa3ad012e4
    70 Na51c4345ef14473aae59d909a1ee05cd schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 Naffd011a8d4641e9bec37daa3ad012e4 rdf:first sg:person.013105002112.72
    73 rdf:rest Nf0c5bf3e07c84ac09f92cc38c5aa8e25
    74 Nb9e6f34673d64baebc5383a6297cbdf7 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
    75 schema:familyName Sidiropoulou Velidou
    76 schema:givenName Dafni
    77 rdf:type schema:Person
    78 Ndd61f56aac0445d8804fe235de7e5cd6 schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 Nf0c5bf3e07c84ac09f92cc38c5aa8e25 rdf:first sg:person.015712700500.85
    81 rdf:rest rdf:nil
    82 Nf13be6e8f71c4211b470014ffc6a5e92 schema:name readcube_id
    83 schema:value 0b96e2f01b1a21f3ffdd28fdc607c940a54f415e2962834fb182231f478a445b
    84 rdf:type schema:PropertyValue
    85 Nf904c75b80cd476e986be1a1e413dc6e rdf:first Nb9e6f34673d64baebc5383a6297cbdf7
    86 rdf:rest N9fa26c2128534c4f9043fdf5b8148b45
    87 Nfa4426e277984efe9063de3e23d2943d schema:name doi
    88 schema:value 10.1007/s11004-015-9584-z
    89 rdf:type schema:PropertyValue
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1039818 schema:issn 1874-8953
    97 1874-8961
    98 schema:name Mathematical Geosciences
    99 rdf:type schema:Periodical
    100 sg:person.013105002112.72 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
    101 schema:familyName Stein
    102 schema:givenName Alfred
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105002112.72
    104 rdf:type schema:Person
    105 sg:person.015147605677.28 schema:affiliation https://www.grid.ac/institutes/grid.466856.f
    106 schema:familyName Tolpekin
    107 schema:givenName Valentyn A.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147605677.28
    109 rdf:type schema:Person
    110 sg:person.015712700500.85 schema:affiliation https://www.grid.ac/institutes/grid.11951.3d
    111 schema:familyName Woldai
    112 schema:givenName Tsehaie
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712700500.85
    114 rdf:type schema:Person
    115 sg:pub.10.1007/1-84628-150-4_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029567500
    116 https://doi.org/10.1007/1-84628-150-4_2
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s10064-009-0255-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021453787
    119 https://doi.org/10.1007/s10064-009-0255-5
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1023/a:1011290230196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049803643
    122 https://doi.org/10.1023/a:1011290230196
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1023/a:1026593302236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005830802
    125 https://doi.org/10.1023/a:1026593302236
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1134/s1054661812020058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017770624
    128 https://doi.org/10.1134/s1054661812020058
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0098-3004(94)90073-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051795424
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0098-3004(95)00042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031644896
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.asr.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105404
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.cageo.2007.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045214527
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.cageo.2010.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050933922
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.cageo.2013.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015131650
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.enggeo.2004.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013831872
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.isprsjprs.2010.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040246883
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.isprsjprs.2013.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035025764
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.isprsjprs.2013.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989618
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.jafrearsci.2006.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020736627
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.jphysparis.2003.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022895213
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.patrec.2003.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003227005
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.patrec.2004.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044821884
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.rse.2004.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030538886
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0040-1951(02)00415-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035317229
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1080/01431160410001705088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029137742
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1080/01431160600658172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031536696
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/igarss.2002.1027154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094375102
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tgrs.1990.572949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608420
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tgrs.2011.2109064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611754
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tpami.1986.4767808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742230
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tpami.1986.4767851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742261
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1117/12.213122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017008743
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1117/12.627699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018929127
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1130/0016-7606(1976)87<1463:lllspn>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051121843
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1130/gsab-15-483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013334265
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.12681/bgsg.16538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105797916
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.3844/ajeassp.2009.476.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071457264
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.5201/ipol.2012.gjmr-lsd schema:sameAs https://app.dimensions.ai/details/publication/pub.1072705424
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.7763/ijcte.2009.v1.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074032448
    191 rdf:type schema:CreativeWork
    192 https://www.grid.ac/institutes/grid.11951.3d schema:alternateName University of the Witwatersrand
    193 schema:name School of Geosciences, University of the Witwatersrand, P O WITS, 2050, Johannesburg, South Africa
    194 rdf:type schema:Organization
    195 https://www.grid.ac/institutes/grid.466856.f schema:alternateName International Institute for Geo-Information Science and Earth Observation
    196 schema:name Faculty of Geoinformation Science and Earth Observation ITC, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...