Effects of Local Dispersion and Kinetic Sorption on Evolution of Concentration Variance in a Heterogeneous Aquifer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04

AUTHORS

Bill X. Hu, Changming He

ABSTRACT

A Eulerian stochastic method is applied to develop a theory of concentration variance for solute transport in a heterogeneous medium. The study focuses on the effects of kinetic sorption and local dispersion on solute dissipation. Spatial distribution of the concentration variance is obtained by scaling the zero local dispersion form of σc2. The scaling function resulting from the local dispersion and kinetic sorption is derived in a closed integral form. It satisfies the measurement of total concentration variance resulting from the Eulerian mass balance using spatially integrated concentration moments. The spatially integrated moments bypass the need for classical closures applied to joint moments between concentration and velocity fields. The study results indicate that kinetic sorption reduces the total development of concentration variance in comparison with non-reactive solute transport. Kinetic sorption acts as a reduction mechanism, but not as a dissipating mechanism like the local dispersion. Kinetic sorption and local dispersion are not additive processes and their effects on the concentration variance depend on the stage of transport time. More... »

PAGES

327-342

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11004-005-9014-8

DOI

http://dx.doi.org/10.1007/s11004-005-9014-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010762450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Geological Sciences, Florida State University, 108 Carraway Building, 32306-4100, Tallahassee, Florida, USA", 
          "id": "http://www.grid.ac/institutes/grid.255986.5", 
          "name": [
            "Department of Geological Sciences, Florida State University, 108 Carraway Building, 32306-4100, Tallahassee, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bill X.", 
        "id": "sg:person.012556140447.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Desert Research Institute, Division of Hydrologic Sciences, University and Community College System of Nevada, 89119, Las Vegas, Nevada, USA", 
          "id": "http://www.grid.ac/institutes/grid.474431.1", 
          "name": [
            "Desert Research Institute, Division of Hydrologic Sciences, University and Community College System of Nevada, 89119, Las Vegas, Nevada, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Changming", 
        "id": "sg:person.015073240063.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073240063.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00647395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018610251", 
          "https://doi.org/10.1007/bf00647395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01581390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022649864", 
          "https://doi.org/10.1007/bf01581390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-75015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019196658", 
          "https://doi.org/10.1007/978-3-642-75015-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "A Eulerian stochastic method is applied to develop a theory of concentration variance for solute transport in a heterogeneous medium. The study focuses on the effects of kinetic sorption and local dispersion on solute dissipation. Spatial distribution of the concentration variance is obtained by scaling the zero local dispersion form of \u03c3c2. The scaling function resulting from the local dispersion and kinetic sorption is derived in a closed integral form. It satisfies the measurement of total concentration variance resulting from the Eulerian mass balance using spatially integrated concentration moments. The spatially integrated moments bypass the need for classical closures applied to joint moments between concentration and velocity fields. The study results indicate that kinetic sorption reduces the total development of concentration variance in comparison with non-reactive solute transport. Kinetic sorption acts as a reduction mechanism, but not as a dissipating mechanism like the local dispersion. Kinetic sorption and local dispersion are not additive processes and their effects on the concentration variance depend on the stage of transport time.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11004-005-9014-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1039818", 
        "issn": [
          "1874-8961", 
          "1874-8953"
        ], 
        "name": "Mathematical Geosciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "concentration variance", 
      "solute transport", 
      "kinetic sorption", 
      "non-reactive solute transport", 
      "dissipating mechanism", 
      "velocity field", 
      "local dispersion", 
      "heterogeneous aquifers", 
      "concentration moments", 
      "additive process", 
      "heterogeneous media", 
      "mass balance", 
      "sorption", 
      "dispersion form", 
      "reduction mechanism", 
      "dispersion", 
      "closed integral form", 
      "integral form", 
      "classical closure", 
      "spatial distribution", 
      "stochastic method", 
      "transport", 
      "dissipation", 
      "transport time", 
      "aquifer", 
      "joint moments", 
      "measurements", 
      "effect", 
      "moment", 
      "field", 
      "process", 
      "distribution", 
      "method", 
      "study results", 
      "mechanism", 
      "results", 
      "comparison", 
      "medium", 
      "balance", 
      "concentration", 
      "time", 
      "evolution", 
      "theory", 
      "form", 
      "development", 
      "variance", 
      "stage", 
      "\u03c3c2", 
      "closure", 
      "study", 
      "function", 
      "need", 
      "total development", 
      "Eulerian stochastic method", 
      "solute dissipation", 
      "local dispersion form", 
      "total concentration variance", 
      "Eulerian mass balance"
    ], 
    "name": "Effects of Local Dispersion and Kinetic Sorption on Evolution of Concentration Variance in a Heterogeneous Aquifer", 
    "pagination": "327-342", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010762450"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11004-005-9014-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11004-005-9014-8", 
      "https://app.dimensions.ai/details/publication/pub.1010762450"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_417.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11004-005-9014-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11004-005-9014-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11004-005-9014-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11004-005-9014-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11004-005-9014-8'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      22 PREDICATES      91 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11004-005-9014-8 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:04
4 anzsrc-for:0403
5 anzsrc-for:09
6 anzsrc-for:0914
7 schema:author N4ff26d2f3340474884fd305d24fef613
8 schema:citation sg:pub.10.1007/978-3-642-75015-1
9 sg:pub.10.1007/bf00647395
10 sg:pub.10.1007/bf01581390
11 schema:datePublished 2006-04
12 schema:datePublishedReg 2006-04-01
13 schema:description A Eulerian stochastic method is applied to develop a theory of concentration variance for solute transport in a heterogeneous medium. The study focuses on the effects of kinetic sorption and local dispersion on solute dissipation. Spatial distribution of the concentration variance is obtained by scaling the zero local dispersion form of σc2. The scaling function resulting from the local dispersion and kinetic sorption is derived in a closed integral form. It satisfies the measurement of total concentration variance resulting from the Eulerian mass balance using spatially integrated concentration moments. The spatially integrated moments bypass the need for classical closures applied to joint moments between concentration and velocity fields. The study results indicate that kinetic sorption reduces the total development of concentration variance in comparison with non-reactive solute transport. Kinetic sorption acts as a reduction mechanism, but not as a dissipating mechanism like the local dispersion. Kinetic sorption and local dispersion are not additive processes and their effects on the concentration variance depend on the stage of transport time.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N3309242c9989476a8b8b2c220046b50f
18 Nd02a0a131ca84ba896bd11cd61a60344
19 sg:journal.1039818
20 schema:keywords Eulerian mass balance
21 Eulerian stochastic method
22 additive process
23 aquifer
24 balance
25 classical closure
26 closed integral form
27 closure
28 comparison
29 concentration
30 concentration moments
31 concentration variance
32 development
33 dispersion
34 dispersion form
35 dissipating mechanism
36 dissipation
37 distribution
38 effect
39 evolution
40 field
41 form
42 function
43 heterogeneous aquifers
44 heterogeneous media
45 integral form
46 joint moments
47 kinetic sorption
48 local dispersion
49 local dispersion form
50 mass balance
51 measurements
52 mechanism
53 medium
54 method
55 moment
56 need
57 non-reactive solute transport
58 process
59 reduction mechanism
60 results
61 solute dissipation
62 solute transport
63 sorption
64 spatial distribution
65 stage
66 stochastic method
67 study
68 study results
69 theory
70 time
71 total concentration variance
72 total development
73 transport
74 transport time
75 variance
76 velocity field
77 σc2
78 schema:name Effects of Local Dispersion and Kinetic Sorption on Evolution of Concentration Variance in a Heterogeneous Aquifer
79 schema:pagination 327-342
80 schema:productId N2d35fc3d10b2448cb6bb365b0b5ef03c
81 N47485d03d38041f786d8ffa8b83bedd3
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010762450
83 https://doi.org/10.1007/s11004-005-9014-8
84 schema:sdDatePublished 2022-01-01T18:15
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nd09fbde88b7d482f8e47accd0b55b68e
87 schema:url https://doi.org/10.1007/s11004-005-9014-8
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N2d35fc3d10b2448cb6bb365b0b5ef03c schema:name dimensions_id
92 schema:value pub.1010762450
93 rdf:type schema:PropertyValue
94 N3309242c9989476a8b8b2c220046b50f schema:issueNumber 3
95 rdf:type schema:PublicationIssue
96 N47485d03d38041f786d8ffa8b83bedd3 schema:name doi
97 schema:value 10.1007/s11004-005-9014-8
98 rdf:type schema:PropertyValue
99 N4789d8f4ba5648b2ae9e931d99f71e12 rdf:first sg:person.015073240063.99
100 rdf:rest rdf:nil
101 N4ff26d2f3340474884fd305d24fef613 rdf:first sg:person.012556140447.41
102 rdf:rest N4789d8f4ba5648b2ae9e931d99f71e12
103 Nd02a0a131ca84ba896bd11cd61a60344 schema:volumeNumber 38
104 rdf:type schema:PublicationVolume
105 Nd09fbde88b7d482f8e47accd0b55b68e schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
111 schema:name Applied Mathematics
112 rdf:type schema:DefinedTerm
113 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
114 schema:name Earth Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
117 schema:name Geology
118 rdf:type schema:DefinedTerm
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
123 schema:name Resources Engineering and Extractive Metallurgy
124 rdf:type schema:DefinedTerm
125 sg:journal.1039818 schema:issn 1874-8953
126 1874-8961
127 schema:name Mathematical Geosciences
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.012556140447.41 schema:affiliation grid-institutes:grid.255986.5
131 schema:familyName Hu
132 schema:givenName Bill X.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012556140447.41
134 rdf:type schema:Person
135 sg:person.015073240063.99 schema:affiliation grid-institutes:grid.474431.1
136 schema:familyName He
137 schema:givenName Changming
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073240063.99
139 rdf:type schema:Person
140 sg:pub.10.1007/978-3-642-75015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019196658
141 https://doi.org/10.1007/978-3-642-75015-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf00647395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018610251
144 https://doi.org/10.1007/bf00647395
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf01581390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022649864
147 https://doi.org/10.1007/bf01581390
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.255986.5 schema:alternateName Department of Geological Sciences, Florida State University, 108 Carraway Building, 32306-4100, Tallahassee, Florida, USA
150 schema:name Department of Geological Sciences, Florida State University, 108 Carraway Building, 32306-4100, Tallahassee, Florida, USA
151 rdf:type schema:Organization
152 grid-institutes:grid.474431.1 schema:alternateName Desert Research Institute, Division of Hydrologic Sciences, University and Community College System of Nevada, 89119, Las Vegas, Nevada, USA
153 schema:name Desert Research Institute, Division of Hydrologic Sciences, University and Community College System of Nevada, 89119, Las Vegas, Nevada, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...