Influence of the Technology of Production of Composites Based on the MAX Phases of Titanium on the Process of Wear ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-07

AUTHORS

Т. О. Prikhna, V. Ya. Podhurs’ka, О. P. Ostash, B. D. Vasyliv, V. B. Sverdun, M. V. Karpets’, T. B. Serbenyuk

ABSTRACT

We study the microhardness, micromechanism of fracture, fracture resistance under static bending, and wear resistance of candidate materials for the electric-contact inserts of streetcar pantographs operating in couples with the material of the contact wire of the electric power network. The investigated materials for the inserts are composites based on Ti3AlC2 and Ti2AlC МАХ-phases obtained by a single-stage technology (hot pressing). These materials are compared with the earlier investigated composites obtained as a result of synthesis in a vacuum and hot pressing (two-stage technology) and with the aluminum alloy used for manufacturing the inserts of pantographs in Ukraine. It is shown that the wear resistances of the materials obtained by the single-stage and two-stage technologies are practically identical and much higher than for the aluminum alloy. However, they have different influence on the characteristics of wear of copper in the “composite (aluminum alloy) – М1 copper” tribocouples. The lowest degree of wear of the copper counterbody least is observed in the case of application of a porous composite impregnated with a glycerin solution. In this case, the wear resistance of copper is 50 times higher than in the couple with aluminum alloy. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11003-019-00244-9

DOI

http://dx.doi.org/10.1007/s11003-019-00244-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122654495


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prikhna", 
        "givenName": "\u0422. \u041e.", 
        "id": "sg:person.012572435107.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572435107.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Podhurs\u2019ka", 
        "givenName": "V. Ya.", 
        "id": "sg:person.013661101575.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661101575.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostash", 
        "givenName": "\u041e. P.", 
        "id": "sg:person.01244161117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244161117.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasyliv", 
        "givenName": "B. D.", 
        "id": "sg:person.01176045717.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sverdun", 
        "givenName": "V. B.", 
        "id": "sg:person.014057067317.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057067317.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpets\u2019", 
        "givenName": "M. V.", 
        "id": "sg:person.012275306307.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275306307.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul\u2019 Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serbenyuk", 
        "givenName": "T. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11003-012-9489-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011936360", 
          "https://doi.org/10.1007/s11003-012-9489-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105994901770345196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043571896", 
          "https://doi.org/10.1361/105994901770345196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11003-019-00222-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116228470", 
          "https://doi.org/10.1007/s11003-019-00222-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-07", 
    "datePublishedReg": "2019-07-01", 
    "description": "We study the microhardness, micromechanism of fracture, fracture resistance under static bending, and wear resistance of candidate materials for the electric-contact inserts of streetcar pantographs operating in couples with the material of the contact wire of the electric power network. The investigated materials for the inserts are composites based on Ti3AlC2 and Ti2AlC \u041c\u0410\u0425-phases obtained by a single-stage technology (hot pressing). These materials are compared with the earlier investigated composites obtained as a result of synthesis in a vacuum and hot pressing (two-stage technology) and with the aluminum alloy used for manufacturing the inserts of pantographs in Ukraine. It is shown that the wear resistances of the materials obtained by the single-stage and two-stage technologies are practically identical and much higher than for the aluminum alloy. However, they have different influence on the characteristics of wear of copper in the \u201ccomposite (aluminum alloy) \u2013 \u041c1 copper\u201d tribocouples. The lowest degree of wear of the copper counterbody least is observed in the case of application of a porous composite impregnated with a glycerin solution. In this case, the wear resistance of copper is 50 times higher than in the couple with aluminum alloy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11003-019-00244-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1358321", 
        "issn": [
          "1068-820X", 
          "1573-885X"
        ], 
        "name": "Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "single-stage technology", 
      "aluminum alloy", 
      "wear resistance", 
      "micromechanisms of fracture", 
      "characteristics of wear", 
      "process of wear", 
      "electric power networks", 
      "two-stage technology", 
      "copper counterbody", 
      "porous composites", 
      "contact wire", 
      "fracture resistance", 
      "static bending", 
      "power network", 
      "candidate materials", 
      "composites", 
      "technology of production", 
      "MAX phases", 
      "alloy", 
      "wear", 
      "case of application", 
      "glycerin solution", 
      "pantograph", 
      "materials", 
      "results of synthesis", 
      "copper", 
      "counterbody", 
      "technology", 
      "tribocouples", 
      "micromechanisms", 
      "microhardness", 
      "Ti2AlC", 
      "Ti3AlC2", 
      "titanium", 
      "resistance", 
      "inserts", 
      "bending", 
      "wire", 
      "different influences", 
      "phase", 
      "vacuum", 
      "influence", 
      "applications", 
      "fractures", 
      "solution", 
      "contact", 
      "characteristics", 
      "low degree", 
      "process", 
      "network", 
      "results", 
      "time", 
      "couples", 
      "production", 
      "cases", 
      "degree", 
      "synthesis", 
      "Ukraine"
    ], 
    "name": "Influence of the Technology of Production of Composites Based on the MAX Phases of Titanium on the Process of Wear in Contact with Copper. Part 2. Single-Stage Technology", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122654495"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11003-019-00244-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11003-019-00244-9", 
      "https://app.dimensions.ai/details/publication/pub.1122654495"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_798.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11003-019-00244-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00244-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00244-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00244-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00244-9'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      87 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11003-019-00244-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9ccd8dbd400d468f81b7b13d6f98c2b5
4 schema:citation sg:pub.10.1007/s11003-012-9489-7
5 sg:pub.10.1007/s11003-019-00222-1
6 sg:pub.10.1361/105994901770345196
7 schema:datePublished 2019-07
8 schema:datePublishedReg 2019-07-01
9 schema:description We study the microhardness, micromechanism of fracture, fracture resistance under static bending, and wear resistance of candidate materials for the electric-contact inserts of streetcar pantographs operating in couples with the material of the contact wire of the electric power network. The investigated materials for the inserts are composites based on Ti3AlC2 and Ti2AlC МАХ-phases obtained by a single-stage technology (hot pressing). These materials are compared with the earlier investigated composites obtained as a result of synthesis in a vacuum and hot pressing (two-stage technology) and with the aluminum alloy used for manufacturing the inserts of pantographs in Ukraine. It is shown that the wear resistances of the materials obtained by the single-stage and two-stage technologies are practically identical and much higher than for the aluminum alloy. However, they have different influence on the characteristics of wear of copper in the “composite (aluminum alloy) – М1 copper” tribocouples. The lowest degree of wear of the copper counterbody least is observed in the case of application of a porous composite impregnated with a glycerin solution. In this case, the wear resistance of copper is 50 times higher than in the couple with aluminum alloy.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N5fe8d5eefc174f6381dd52fdd5840f72
14 Nef470d4987944b67b46802261b7686b5
15 sg:journal.1358321
16 schema:keywords MAX phases
17 Ti2AlC
18 Ti3AlC2
19 Ukraine
20 alloy
21 aluminum alloy
22 applications
23 bending
24 candidate materials
25 case of application
26 cases
27 characteristics
28 characteristics of wear
29 composites
30 contact
31 contact wire
32 copper
33 copper counterbody
34 counterbody
35 couples
36 degree
37 different influences
38 electric power networks
39 fracture resistance
40 fractures
41 glycerin solution
42 influence
43 inserts
44 low degree
45 materials
46 microhardness
47 micromechanisms
48 micromechanisms of fracture
49 network
50 pantograph
51 phase
52 porous composites
53 power network
54 process
55 process of wear
56 production
57 resistance
58 results
59 results of synthesis
60 single-stage technology
61 solution
62 static bending
63 synthesis
64 technology
65 technology of production
66 time
67 titanium
68 tribocouples
69 two-stage technology
70 vacuum
71 wear
72 wear resistance
73 wire
74 schema:name Influence of the Technology of Production of Composites Based on the MAX Phases of Titanium on the Process of Wear in Contact with Copper. Part 2. Single-Stage Technology
75 schema:pagination 1-8
76 schema:productId N84f2855d5a07473eb2a43074083688a4
77 Nfa990efd82dd4b8abc9bea8233619f8a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122654495
79 https://doi.org/10.1007/s11003-019-00244-9
80 schema:sdDatePublished 2022-05-20T07:35
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nfca6cfccaf124f60b8dfd8f2f1aeb814
83 schema:url https://doi.org/10.1007/s11003-019-00244-9
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N07df0b8bc2ae4fa088762c5caba5c694 rdf:first N180202d88ccb4038adb8e4d5d9bbd17d
88 rdf:rest rdf:nil
89 N180202d88ccb4038adb8e4d5d9bbd17d schema:affiliation grid-institutes:grid.418751.e
90 schema:familyName Serbenyuk
91 schema:givenName T. B.
92 rdf:type schema:Person
93 N225b7bb5727244b1a8d16391cf7d9729 rdf:first sg:person.01244161117.36
94 rdf:rest N2722745a77514f13b0c6b8088971878f
95 N2722745a77514f13b0c6b8088971878f rdf:first sg:person.01176045717.18
96 rdf:rest N53b86ba221f149aa954ceafc0ccb4b82
97 N38eb0998f69d4d94bd3f98677432f764 rdf:first sg:person.012275306307.79
98 rdf:rest N07df0b8bc2ae4fa088762c5caba5c694
99 N53b86ba221f149aa954ceafc0ccb4b82 rdf:first sg:person.014057067317.86
100 rdf:rest N38eb0998f69d4d94bd3f98677432f764
101 N5fe8d5eefc174f6381dd52fdd5840f72 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N84f2855d5a07473eb2a43074083688a4 schema:name doi
104 schema:value 10.1007/s11003-019-00244-9
105 rdf:type schema:PropertyValue
106 N9ccd8dbd400d468f81b7b13d6f98c2b5 rdf:first sg:person.012572435107.08
107 rdf:rest Naf80774d3b214a84a884683741de969d
108 Naf80774d3b214a84a884683741de969d rdf:first sg:person.013661101575.77
109 rdf:rest N225b7bb5727244b1a8d16391cf7d9729
110 Nef470d4987944b67b46802261b7686b5 schema:volumeNumber 55
111 rdf:type schema:PublicationVolume
112 Nfa990efd82dd4b8abc9bea8233619f8a schema:name dimensions_id
113 schema:value pub.1122654495
114 rdf:type schema:PropertyValue
115 Nfca6cfccaf124f60b8dfd8f2f1aeb814 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
118 schema:name Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
121 schema:name Materials Engineering
122 rdf:type schema:DefinedTerm
123 sg:journal.1358321 schema:issn 1068-820X
124 1573-885X
125 schema:name Materials Science
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01176045717.18 schema:affiliation grid-institutes:grid.418751.e
129 schema:familyName Vasyliv
130 schema:givenName B. D.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18
132 rdf:type schema:Person
133 sg:person.012275306307.79 schema:affiliation grid-institutes:grid.418751.e
134 schema:familyName Karpets’
135 schema:givenName M. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275306307.79
137 rdf:type schema:Person
138 sg:person.01244161117.36 schema:affiliation grid-institutes:grid.418751.e
139 schema:familyName Ostash
140 schema:givenName О. P.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244161117.36
142 rdf:type schema:Person
143 sg:person.012572435107.08 schema:affiliation grid-institutes:grid.418751.e
144 schema:familyName Prikhna
145 schema:givenName Т. О.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572435107.08
147 rdf:type schema:Person
148 sg:person.013661101575.77 schema:affiliation grid-institutes:grid.418751.e
149 schema:familyName Podhurs’ka
150 schema:givenName V. Ya.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661101575.77
152 rdf:type schema:Person
153 sg:person.014057067317.86 schema:affiliation grid-institutes:grid.418751.e
154 schema:familyName Sverdun
155 schema:givenName V. B.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057067317.86
157 rdf:type schema:Person
158 sg:pub.10.1007/s11003-012-9489-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011936360
159 https://doi.org/10.1007/s11003-012-9489-7
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11003-019-00222-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116228470
162 https://doi.org/10.1007/s11003-019-00222-1
163 rdf:type schema:CreativeWork
164 sg:pub.10.1361/105994901770345196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043571896
165 https://doi.org/10.1361/105994901770345196
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.418751.e schema:alternateName Bakul’ Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine
168 Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine
169 schema:name Bakul’ Institute for Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine
170 Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...