Influence of the Technology of Production of Composites Based on the Max Phases of Titanium on the Process of Wear ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Т. О. Prikhna, V. Ya. Podhurs’ka, О. P. Оstash, B. D. Vasyliv, V. B. Sverdun, М. V. Karpets’, Т. B. Serbenyuk

ABSTRACT

We study the tribological properties of materials used as electrocontact inserts of the tram pantographs in couples with M1copper of the contact wires of power electric circuits. As promising materials for the pantograph insert, we considered the composites based on the MAX phases of Ti3AlC2, (Ti, Nb)3AlC2, and Ti2AlC and also on TiC and Al2O3. The highest wear resistance was detected for composites with a content of the MAX phase of structural modification 312 equal to 85–95%. The wear of these materials after 5 km of their operation under a contact stress of 0.25 MPa (which corresponds to the operating conditions) turns out to be 20 times lower than for the aluminum alloy used in the Ukraine for the production of pantograph inserts. The wear resistance of M1 copper also depends on the phase constitution of the material of inserts: in couples with composites based on 95% Ti3AlC2 + 5% TiC or 85% (Ti, Nb)3AlC2 + 10% TiC + 5% Al2O3, it was 4–5 times higher than in contact with aluminum alloy. More... »

PAGES

589-595

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11003-019-00222-1

DOI

http://dx.doi.org/10.1007/s11003-019-00222-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1116228470


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prikhna", 
        "givenName": "\u0422. \u041e.", 
        "id": "sg:person.012572435107.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572435107.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Podhurs\u2019ka", 
        "givenName": "V. Ya.", 
        "id": "sg:person.013661101575.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661101575.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u041estash", 
        "givenName": "\u041e. P.", 
        "id": "sg:person.01244161117.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244161117.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasyliv", 
        "givenName": "B. D.", 
        "id": "sg:person.01176045717.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sverdun", 
        "givenName": "V. B.", 
        "id": "sg:person.014057067317.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057067317.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpets\u2019", 
        "givenName": "\u041c. V.", 
        "id": "sg:person.012275306307.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275306307.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serbenyuk", 
        "givenName": "\u0422. B.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "We study the tribological properties of materials used as electrocontact inserts of the tram pantographs in couples with M1copper of the contact wires of power electric circuits. As promising materials for the pantograph insert, we considered the composites based on the MAX phases of Ti3AlC2, (Ti, Nb)3AlC2, and Ti2AlC and also on TiC and Al2O3. The highest wear resistance was detected for composites with a content of the MAX phase of structural modification 312 equal to 85\u201395%. The wear of these materials after 5 km of their operation under a contact stress of 0.25 MPa (which corresponds to the operating conditions) turns out to be 20 times lower than for the aluminum alloy used in the Ukraine for the production of pantograph inserts. The wear resistance of M1 copper also depends on the phase constitution of the material of inserts: in couples with composites based on 95% Ti3AlC2 + 5% TiC or 85% (Ti, Nb)3AlC2 + 10% TiC + 5% Al2O3, it was 4\u20135 times higher than in contact with aluminum alloy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11003-019-00222-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1358321", 
        "issn": [
          "1068-820X", 
          "1573-885X"
        ], 
        "name": "Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "wear resistance", 
      "aluminum alloy", 
      "MAX phases", 
      "power electric circuit", 
      "high wear resistance", 
      "process of wear", 
      "two-stage technology", 
      "tribological properties", 
      "contact wire", 
      "M1 copper", 
      "phase constitution", 
      "contact stress", 
      "promising material", 
      "composites", 
      "technology of production", 
      "electric circuit", 
      "alloy", 
      "wear", 
      "Ti3AlC2", 
      "TiC", 
      "Al2O3", 
      "materials", 
      "Ti", 
      "Ti2AlC", 
      "pantograph", 
      "copper", 
      "MPa", 
      "titanium", 
      "inserts", 
      "technology", 
      "phase", 
      "wire", 
      "circuit", 
      "resistance", 
      "contact", 
      "operation", 
      "properties", 
      "stress", 
      "influence", 
      "process", 
      "time", 
      "production", 
      "content", 
      "couples", 
      "constitution", 
      "Ukraine"
    ], 
    "name": "Influence of the Technology of Production of Composites Based on the Max Phases of Titanium on the Process of Wear in Contact with Copper. Part 1. Two-Stage Technology", 
    "pagination": "589-595", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1116228470"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11003-019-00222-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11003-019-00222-1", 
      "https://app.dimensions.ai/details/publication/pub.1116228470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_806.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11003-019-00222-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00222-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00222-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00222-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11003-019-00222-1'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      72 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11003-019-00222-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N56d1c33299ef4885a7bf2296cce15006
4 schema:datePublished 2019-01
5 schema:datePublishedReg 2019-01-01
6 schema:description We study the tribological properties of materials used as electrocontact inserts of the tram pantographs in couples with M1copper of the contact wires of power electric circuits. As promising materials for the pantograph insert, we considered the composites based on the MAX phases of Ti3AlC2, (Ti, Nb)3AlC2, and Ti2AlC and also on TiC and Al2O3. The highest wear resistance was detected for composites with a content of the MAX phase of structural modification 312 equal to 85–95%. The wear of these materials after 5 km of their operation under a contact stress of 0.25 MPa (which corresponds to the operating conditions) turns out to be 20 times lower than for the aluminum alloy used in the Ukraine for the production of pantograph inserts. The wear resistance of M1 copper also depends on the phase constitution of the material of inserts: in couples with composites based on 95% Ti3AlC2 + 5% TiC or 85% (Ti, Nb)3AlC2 + 10% TiC + 5% Al2O3, it was 4–5 times higher than in contact with aluminum alloy.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb0e12567d8be41e09c02af272f69c13d
11 Nd138e4f69b8848c9a24461a41c449048
12 sg:journal.1358321
13 schema:keywords Al2O3
14 M1 copper
15 MAX phases
16 MPa
17 Ti
18 Ti2AlC
19 Ti3AlC2
20 TiC
21 Ukraine
22 alloy
23 aluminum alloy
24 circuit
25 composites
26 constitution
27 contact
28 contact stress
29 contact wire
30 content
31 copper
32 couples
33 electric circuit
34 high wear resistance
35 influence
36 inserts
37 materials
38 operation
39 pantograph
40 phase
41 phase constitution
42 power electric circuit
43 process
44 process of wear
45 production
46 promising material
47 properties
48 resistance
49 stress
50 technology
51 technology of production
52 time
53 titanium
54 tribological properties
55 two-stage technology
56 wear
57 wear resistance
58 wire
59 schema:name Influence of the Technology of Production of Composites Based on the Max Phases of Titanium on the Process of Wear in Contact with Copper. Part 1. Two-Stage Technology
60 schema:pagination 589-595
61 schema:productId N118d9f1e8f724d88b0a07961e2291557
62 N94832829dcf84d4480c24fef98398a35
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116228470
64 https://doi.org/10.1007/s11003-019-00222-1
65 schema:sdDatePublished 2022-05-20T07:35
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nad95f3ef9804426db2ebf43a8c2e3add
68 schema:url https://doi.org/10.1007/s11003-019-00222-1
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0580fff05e0b4f829f2004ceb1ef3e06 rdf:first sg:person.01176045717.18
73 rdf:rest Nc8292481edf946bd87c9089e54a661ce
74 N118d9f1e8f724d88b0a07961e2291557 schema:name dimensions_id
75 schema:value pub.1116228470
76 rdf:type schema:PropertyValue
77 N36fefdee0933409d8fd19587050db86c rdf:first Nebebc2ee12a148208719c9088353d555
78 rdf:rest rdf:nil
79 N56d1c33299ef4885a7bf2296cce15006 rdf:first sg:person.012572435107.08
80 rdf:rest N6f08a498a8f1435a9d621a10190fca73
81 N6f08a498a8f1435a9d621a10190fca73 rdf:first sg:person.013661101575.77
82 rdf:rest Nd2efb588ae1445048b087f403ec46e8d
83 N8919ddefb25943e5b2daa2403733d128 rdf:first sg:person.012275306307.79
84 rdf:rest N36fefdee0933409d8fd19587050db86c
85 N94832829dcf84d4480c24fef98398a35 schema:name doi
86 schema:value 10.1007/s11003-019-00222-1
87 rdf:type schema:PropertyValue
88 Nad95f3ef9804426db2ebf43a8c2e3add schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nb0e12567d8be41e09c02af272f69c13d schema:volumeNumber 54
91 rdf:type schema:PublicationVolume
92 Nc8292481edf946bd87c9089e54a661ce rdf:first sg:person.014057067317.86
93 rdf:rest N8919ddefb25943e5b2daa2403733d128
94 Nd138e4f69b8848c9a24461a41c449048 schema:issueNumber 4
95 rdf:type schema:PublicationIssue
96 Nd2efb588ae1445048b087f403ec46e8d rdf:first sg:person.01244161117.36
97 rdf:rest N0580fff05e0b4f829f2004ceb1ef3e06
98 Nebebc2ee12a148208719c9088353d555 schema:affiliation grid-institutes:grid.418751.e
99 schema:familyName Serbenyuk
100 schema:givenName Т. B.
101 rdf:type schema:Person
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
106 schema:name Materials Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1358321 schema:issn 1068-820X
109 1573-885X
110 schema:name Materials Science
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.01176045717.18 schema:affiliation grid-institutes:grid.418751.e
114 schema:familyName Vasyliv
115 schema:givenName B. D.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176045717.18
117 rdf:type schema:Person
118 sg:person.012275306307.79 schema:affiliation grid-institutes:grid.418751.e
119 schema:familyName Karpets’
120 schema:givenName М. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012275306307.79
122 rdf:type schema:Person
123 sg:person.01244161117.36 schema:affiliation grid-institutes:grid.418751.e
124 schema:familyName Оstash
125 schema:givenName О. P.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244161117.36
127 rdf:type schema:Person
128 sg:person.012572435107.08 schema:affiliation grid-institutes:grid.418751.e
129 schema:familyName Prikhna
130 schema:givenName Т. О.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012572435107.08
132 rdf:type schema:Person
133 sg:person.013661101575.77 schema:affiliation grid-institutes:grid.418751.e
134 schema:familyName Podhurs’ka
135 schema:givenName V. Ya.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661101575.77
137 rdf:type schema:Person
138 sg:person.014057067317.86 schema:affiliation grid-institutes:grid.418751.e
139 schema:familyName Sverdun
140 schema:givenName V. B.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014057067317.86
142 rdf:type schema:Person
143 grid-institutes:grid.418751.e schema:alternateName Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine
144 Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine
145 schema:name Bakul Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv, Ukraine
146 Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv, Ukraine
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...