Diophantine equations in separated variables View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03

AUTHORS

Dijana Kreso, Robert F. Tichy

ABSTRACT

We study Diophantine equations of type f ( x ) = g ( y ) , where both f and g have at least two distinct critical points (roots of the derivative) and equal critical values at at most two distinct critical points. Various classical families of polynomials ( f n ) n are such that f n satisfies these assumptions for all n. Our results cover and generalize several results in the literature on the finiteness of integral solutions to such equations. In doing so, we analyse the properties of the monodromy groups of such polynomials. We show that if f has coefficients in a field K of characteristic zero, and at least two distinct critical points and all distinct critical values, then the monodromy group of f is a doubly transitive permutation group. In particular, f cannot be represented as a composition of lower degree polynomials. Several authors have studied monodromy groups of polynomials with some similar properties. We further show that if f has at least two distinct critical points and equal critical values at at most two of them, and if f ( x ) = g ( h ( x ) ) with g , h K [ x ] and deg g > 1 , then either deg h 2 , or f is of special type. In the latter case, in particular, f has no three simple critical points, nor five distinct critical points. More... »

PAGES

47-67

References to SciGraph publications

  • 2002-04. Diophantine Equations and Bernoulli Polynomials in COMPOSITIO MATHEMATICA
  • 2008-10. On composite lacunary polynomials and the proof of a conjecture of Schinzel in INVENTIONES MATHEMATICAE
  • 2011-03. On equal values of trinomials in MONATSHEFTE FÜR MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10998-017-0195-y

    DOI

    http://dx.doi.org/10.1007/s10998-017-0195-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090943566

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30636814


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2005", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Literary Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Language, Communication and Culture", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Graz University of Technology, Steyrergasse 30/II, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kreso", 
            "givenName": "Dijana", 
            "id": "sg:person.07725507570.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725507570.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Graz University of Technology, Steyrergasse 30/II, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00605-009-0169-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000011576", 
              "https://doi.org/10.1007/s00605-009-0169-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1446788700038349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004480602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1446788700038349", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004480602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17476930903394838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005024075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-008-0136-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006053189", 
              "https://doi.org/10.1007/s00222-008-0136-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-008-0136-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006053189", 
              "https://doi.org/10.1007/s00222-008-0136-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014972217217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006077877", 
              "https://doi.org/10.1023/a:1014972217217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-3577(03)90010-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028113096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1922-1501189-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033621725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.indag.2015.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040454639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qjmath/52.2.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059986099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/12.1.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059987100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1029000374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064975707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2989/16073600509486118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070957214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3336/gm.47.2.02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071148226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa127-2-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072178262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa161-3-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072179075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5486/pmd.2013.5480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072917510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5565/publmat_43199_08", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072982570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110285581.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086762149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-21-1-153-171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091798215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511542916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098698483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-95-3-261-288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101092755"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-03", 
        "datePublishedReg": "2018-03-01", 
        "description": "We study Diophantine equations of type f ( x ) = g ( y )  , where both f and g have at least two distinct critical points (roots of the derivative) and equal critical values at at most two distinct critical points. Various classical families of polynomials  ( f n ) n  are such that f n  satisfies these assumptions for all n. Our results cover and generalize several results in the literature on the finiteness of integral solutions to such equations. In doing so, we analyse the properties of the monodromy groups of such polynomials. We show that if f has coefficients in a field K of characteristic zero, and at least two distinct critical points and all distinct critical values, then the monodromy group of f is a doubly transitive permutation group. In particular, f cannot be represented as a composition of lower degree polynomials. Several authors have studied monodromy groups of polynomials with some similar properties. We further show that if f has at least two distinct critical points and equal critical values at at most two of them, and if f ( x ) = g ( h ( x ) )  with g , h \u2208 K [ x ]  and deg g > 1  , then either deg h \u2264 2  , or f is of special type. In the latter case, in particular, f has no three simple critical points, nor five distinct critical points.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10998-017-0195-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7580442", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7580468", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136293", 
            "issn": [
              "0031-5303", 
              "1588-2829"
            ], 
            "name": "Periodica Mathematica Hungarica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "76"
          }
        ], 
        "name": "Diophantine equations in separated variables", 
        "pagination": "47-67", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "22ac38195617c52b90f6d5df816d358577b66b2d8726528958ddcdb3325f6ba6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30636814"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101736503"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10998-017-0195-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090943566"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10998-017-0195-y", 
          "https://app.dimensions.ai/details/publication/pub.1090943566"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99832_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10998-017-0195-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10998-017-0195-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10998-017-0195-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10998-017-0195-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10998-017-0195-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10998-017-0195-y schema:about anzsrc-for:20
    2 anzsrc-for:2005
    3 schema:author Nac24eeb6da164473aa95c74cd323ae4f
    4 schema:citation sg:pub.10.1007/s00222-008-0136-8
    5 sg:pub.10.1007/s00605-009-0169-0
    6 sg:pub.10.1023/a:1014972217217
    7 https://doi.org/10.1016/j.indag.2015.11.006
    8 https://doi.org/10.1016/s0019-3577(03)90010-3
    9 https://doi.org/10.1017/cbo9780511542916
    10 https://doi.org/10.1017/s1446788700038349
    11 https://doi.org/10.1080/17476930903394838
    12 https://doi.org/10.1090/s0002-9947-1922-1501189-9
    13 https://doi.org/10.1093/qjmath/52.2.161
    14 https://doi.org/10.1093/qmath/12.1.304
    15 https://doi.org/10.1307/mmj/1029000374
    16 https://doi.org/10.1515/9783110285581.11
    17 https://doi.org/10.2989/16073600509486118
    18 https://doi.org/10.3336/gm.47.2.02
    19 https://doi.org/10.4064/aa-21-1-153-171
    20 https://doi.org/10.4064/aa-95-3-261-288
    21 https://doi.org/10.4064/aa127-2-5
    22 https://doi.org/10.4064/aa161-3-5
    23 https://doi.org/10.5486/pmd.2013.5480
    24 https://doi.org/10.5565/publmat_43199_08
    25 schema:datePublished 2018-03
    26 schema:datePublishedReg 2018-03-01
    27 schema:description We study Diophantine equations of type <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mo>(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> , where both <i>f</i> and <i>g</i> have at least two distinct critical points (roots of the derivative) and equal critical values at at most two distinct critical points. Various classical families of polynomials <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mrow><mml:mo>(</mml:mo> <mml:msub><mml:mi>f</mml:mi> <mml:mi>n</mml:mi></mml:msub> <mml:mo>)</mml:mo></mml:mrow> <mml:mi>n</mml:mi></mml:msub> </mml:math> are such that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>f</mml:mi> <mml:mi>n</mml:mi></mml:msub> </mml:math> satisfies these assumptions for all <i>n</i>. Our results cover and generalize several results in the literature on the finiteness of integral solutions to such equations. In doing so, we analyse the properties of the monodromy groups of such polynomials. We show that if <i>f</i> has coefficients in a field <i>K</i> of characteristic zero, and at least two distinct critical points and all distinct critical values, then the monodromy group of <i>f</i> is a doubly transitive permutation group. In particular, <i>f</i> cannot be represented as a composition of lower degree polynomials. Several authors have studied monodromy groups of polynomials with some similar properties. We further show that if <i>f</i> has at least two distinct critical points and equal critical values at at most two of them, and if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> <mml:mo>(</mml:mo> <mml:mi>h</mml:mi> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>h</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>K</mml:mi> <mml:mo>[</mml:mo> <mml:mi>x</mml:mi> <mml:mo>]</mml:mo></mml:mrow> </mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>deg</mml:mo> <mml:mi>g</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn></mml:mrow> </mml:math> , then either <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>deg</mml:mo> <mml:mi>h</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn></mml:mrow> </mml:math> , or <i>f</i> is of special type. In the latter case, in particular, <i>f</i> has no three simple critical points, nor five distinct critical points.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N42a4811e9dcb41bc880d1af36544b39d
    32 N7196b1cb918742f29ee70738ce3c1fc7
    33 sg:journal.1136293
    34 schema:name Diophantine equations in separated variables
    35 schema:pagination 47-67
    36 schema:productId N1319c76e9d5546929c55621d910435a8
    37 N64ac7661a0b34d4ea3eb15cf5d0ed9c5
    38 N8c4981a257224cf086d8638511a44444
    39 Nbcd75e9677ce4e0db04043623066102d
    40 Neb901cbd197f4b0ba91157c15cf16416
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090943566
    42 https://doi.org/10.1007/s10998-017-0195-y
    43 schema:sdDatePublished 2019-04-11T09:38
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Ne3deead390c7428ab3e759dad4b521fa
    46 schema:url https://link.springer.com/10.1007%2Fs10998-017-0195-y
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N1319c76e9d5546929c55621d910435a8 schema:name pubmed_id
    51 schema:value 30636814
    52 rdf:type schema:PropertyValue
    53 N42a4811e9dcb41bc880d1af36544b39d schema:volumeNumber 76
    54 rdf:type schema:PublicationVolume
    55 N64ac7661a0b34d4ea3eb15cf5d0ed9c5 schema:name doi
    56 schema:value 10.1007/s10998-017-0195-y
    57 rdf:type schema:PropertyValue
    58 N7196b1cb918742f29ee70738ce3c1fc7 schema:issueNumber 1
    59 rdf:type schema:PublicationIssue
    60 N8c4981a257224cf086d8638511a44444 schema:name dimensions_id
    61 schema:value pub.1090943566
    62 rdf:type schema:PropertyValue
    63 Nac24eeb6da164473aa95c74cd323ae4f rdf:first sg:person.07725507570.17
    64 rdf:rest Neb106a0f544b4f04bfd1582beeda630e
    65 Nbcd75e9677ce4e0db04043623066102d schema:name nlm_unique_id
    66 schema:value 101736503
    67 rdf:type schema:PropertyValue
    68 Ne3deead390c7428ab3e759dad4b521fa schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Neb106a0f544b4f04bfd1582beeda630e rdf:first sg:person.015312676677.43
    71 rdf:rest rdf:nil
    72 Neb901cbd197f4b0ba91157c15cf16416 schema:name readcube_id
    73 schema:value 22ac38195617c52b90f6d5df816d358577b66b2d8726528958ddcdb3325f6ba6
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Language, Communication and Culture
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:2005 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Literary Studies
    80 rdf:type schema:DefinedTerm
    81 sg:grant.7580442 http://pending.schema.org/fundedItem sg:pub.10.1007/s10998-017-0195-y
    82 rdf:type schema:MonetaryGrant
    83 sg:grant.7580468 http://pending.schema.org/fundedItem sg:pub.10.1007/s10998-017-0195-y
    84 rdf:type schema:MonetaryGrant
    85 sg:journal.1136293 schema:issn 0031-5303
    86 1588-2829
    87 schema:name Periodica Mathematica Hungarica
    88 rdf:type schema:Periodical
    89 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    90 schema:familyName Tichy
    91 schema:givenName Robert F.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    93 rdf:type schema:Person
    94 sg:person.07725507570.17 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    95 schema:familyName Kreso
    96 schema:givenName Dijana
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725507570.17
    98 rdf:type schema:Person
    99 sg:pub.10.1007/s00222-008-0136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006053189
    100 https://doi.org/10.1007/s00222-008-0136-8
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00605-009-0169-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011576
    103 https://doi.org/10.1007/s00605-009-0169-0
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1023/a:1014972217217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006077877
    106 https://doi.org/10.1023/a:1014972217217
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.indag.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040454639
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/s0019-3577(03)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028113096
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1017/cbo9780511542916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698483
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1017/s1446788700038349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004480602
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1080/17476930903394838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005024075
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1090/s0002-9947-1922-1501189-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033621725
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1093/qjmath/52.2.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059986099
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1093/qmath/12.1.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059987100
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1307/mmj/1029000374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064975707
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1515/9783110285581.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086762149
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.2989/16073600509486118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070957214
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.3336/gm.47.2.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071148226
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.4064/aa-21-1-153-171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091798215
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.4064/aa-95-3-261-288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101092755
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.4064/aa127-2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072178262
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.4064/aa161-3-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072179075
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.5486/pmd.2013.5480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072917510
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.5565/publmat_43199_08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072982570
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
    145 schema:name Graz University of Technology, Steyrergasse 30/II, 8010, Graz, Austria
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...