Ontology type: schema:ScholarlyArticle Open Access: True
2007-11
AUTHORSShigeki Akiyama, Horst Brunotte, Attila Pethő
ABSTRACTThe concept of a canonical number system can be regarded as a natural generalization of decimal representations of rational integers to elements of residue class rings of polynomial rings. Generators of canonical number systems are CNS polynomials which are known in the linear and quadratic cases, but whose complete description is still open. In the present note reducible CNS polynomials are treated, and the main result is the characterization of reducible cubic CNS polynomials. More... »
PAGES177-183
http://scigraph.springernature.com/pub.10.1007/s10998-007-4177-y
DOIhttp://dx.doi.org/10.1007/s10998-007-4177-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027920730
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan",
"id": "http://www.grid.ac/institutes/grid.260975.f",
"name": [
"Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Haus-Endt-Strasse 88, D-40593, D\u00fcsseldorf, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Haus-Endt-Strasse 88, D-40593, D\u00fcsseldorf, Germany"
],
"type": "Organization"
},
"familyName": "Brunotte",
"givenName": "Horst",
"id": "sg:person.012747025157.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747025157.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010, Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "Peth\u0151",
"givenName": "Attila",
"id": "sg:person.013334020373.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01895142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050389700",
"https://doi.org/10.1007/bf01895142"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-32439-3_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049444289",
"https://doi.org/10.1007/978-3-540-32439-3_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10474-005-0221-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047907570",
"https://doi.org/10.1007/s10474-005-0221-z"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-11",
"datePublishedReg": "2007-11-01",
"description": "The concept of a canonical number system can be regarded as a natural generalization of decimal representations of rational integers to elements of residue class rings of polynomial rings. Generators of canonical number systems are CNS polynomials which are known in the linear and quadratic cases, but whose complete description is still open. In the present note reducible CNS polynomials are treated, and the main result is the characterization of reducible cubic CNS polynomials.",
"genre": "article",
"id": "sg:pub.10.1007/s10998-007-4177-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136293",
"issn": [
"0031-5303",
"1588-2829"
],
"name": "Periodica Mathematica Hungarica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"number system",
"generator",
"system",
"characterization",
"elements",
"polynomials",
"complete description",
"results",
"concept",
"ring",
"description",
"decimal representation",
"quadratic case",
"main results",
"representation",
"cases",
"generalization",
"canonical number systems",
"integers",
"residue class ring",
"natural generalization",
"rational integers",
"polynomial ring"
],
"name": "Reducible cubic CNS polynomials",
"pagination": "177-183",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027920730"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10998-007-4177-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10998-007-4177-y",
"https://app.dimensions.ai/details/publication/pub.1027920730"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_441.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10998-007-4177-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10998-007-4177-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10998-007-4177-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10998-007-4177-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10998-007-4177-y'
This table displays all metadata directly associated to this object as RDF triples.
113 TRIPLES
22 PREDICATES
52 URIs
41 LITERALS
6 BLANK NODES