Remarks on a conjecture on certain integer sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-03

AUTHORS

Shigeki Akiyama, Horst Brunotte, Attila Pethő, Wolfgang Steiner

ABSTRACT

The periodicity of sequences of integers ]]>]]>]]>]]>]]>]]>]]>(a_{n})_{n\in\mathbb Z}$ satisfying the inequalities ]]> 0 \le a_{n-1}+\lambda a_n +a_{n+1} < 1 \ (n \in {\mathbb Z}) $$ is studied for real $ \lambda $ with $|\lambda|< 2$. Periodicity is proved in case $ \lambda $ is the golden ratio; for other values of $ \lambda $ statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7

DOI

http://dx.doi.org/10.1007/s10998-006-0002-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046571840


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics,  Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics,  Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Haus-Endt-Stra\u00dfe 88, D-40593 D\u00fcsseldorf,  Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Haus-Endt-Stra\u00dfe 88, D-40593 D\u00fcsseldorf,  Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brunotte", 
        "givenName": "Horst", 
        "id": "sg:person.012747025157.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747025157.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen,  Hungary", 
          "id": "http://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen,  Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peth\u0151", 
        "givenName": "Attila", 
        "id": "sg:person.013334020373.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Diskrete Mathematik und Geometrie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040 Wien, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institut f\u00fcr Diskrete Mathematik und Geometrie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040 Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steiner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.012140615123.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "The periodicity of sequences of integers ]]>]]>]]>]]>]]>]]>]]>(a_{n})_{n\\in\\mathbb Z}$ satisfying the inequalities ]]> 0 \\le a_{n-1}+\\lambda a_n +a_{n+1} < 1 \\ (n \\in {\\mathbb Z}) $$ is studied for real $ \\lambda $ with $|\\lambda|< 2$. Periodicity is proved in case $ \\lambda $ is the golden ratio; for other values of $ \\lambda $ statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10998-006-0002-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136293", 
        "issn": [
          "0031-5303", 
          "1588-2829"
        ], 
        "name": "Periodica Mathematica Hungarica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "cases", 
      "period", 
      "ID", 
      "ratio", 
      "investigation", 
      "number", 
      "period length", 
      "length", 
      "results", 
      "values", 
      "statements", 
      "sequence", 
      "further interesting result", 
      "morphology", 
      "system", 
      "problem", 
      "InlineEquation ID", 
      "interesting results", 
      "periodicity", 
      "inequality", 
      "golden ratio", 
      "remarks", 
      "Salem numbers", 
      "integers", 
      "shift radix systems", 
      "conjecture", 
      "certain integer sequences", 
      "integer sequences", 
      "radix systems"
    ], 
    "name": "Remarks on a conjecture on certain integer sequences", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046571840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10998-006-0002-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10998-006-0002-7", 
      "https://app.dimensions.ai/details/publication/pub.1046571840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_417.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10998-006-0002-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      55 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10998-006-0002-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2c6c244132134e1cb44d8d05fac96dd8
4 schema:datePublished 2006-03
5 schema:datePublishedReg 2006-03-01
6 schema:description The periodicity of sequences of integers <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>(a_{n})_{n\in\mathbb Z}$ satisfying the inequalities <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> 0 \le a_{n-1}+\lambda a_n +a_{n+1} < 1 \ (n \in {\mathbb Z}) $$ is studied for real $ \lambda $ with $|\lambda|< 2$. Periodicity is proved in case $ \lambda $ is the golden ratio; for other values of $ \lambda $ statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N2af81244bfe34c73b924d6208a8ba156
11 Ndda89d223eb54e9f882c0910f7dda04b
12 sg:journal.1136293
13 schema:keywords ID
14 InlineEquation ID
15 Salem numbers
16 cases
17 certain integer sequences
18 conjecture
19 further interesting result
20 golden ratio
21 inequality
22 integer sequences
23 integers
24 interesting results
25 investigation
26 length
27 morphology
28 number
29 period
30 period length
31 periodicity
32 problem
33 radix systems
34 ratio
35 remarks
36 results
37 sequence
38 shift radix systems
39 statements
40 system
41 values
42 schema:name Remarks on a conjecture on certain integer sequences
43 schema:pagination 1-17
44 schema:productId N194194204f434708a073cdbbb92fa1e8
45 N99d406602a274f7d97ec62e40b0ed360
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046571840
47 https://doi.org/10.1007/s10998-006-0002-7
48 schema:sdDatePublished 2022-05-10T09:56
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N1fae292ecf71408aab4d7d3d606ee616
51 schema:url https://doi.org/10.1007/s10998-006-0002-7
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N194194204f434708a073cdbbb92fa1e8 schema:name dimensions_id
56 schema:value pub.1046571840
57 rdf:type schema:PropertyValue
58 N1fae292ecf71408aab4d7d3d606ee616 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N2af81244bfe34c73b924d6208a8ba156 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N2c6c244132134e1cb44d8d05fac96dd8 rdf:first sg:person.011153327405.03
63 rdf:rest Nf9964b838d224219987efa4d00bf7713
64 N8b45a6f41923411c9006a42577eaf0e5 rdf:first sg:person.013334020373.46
65 rdf:rest Nacc00e7f99974f52b45c923efac40aeb
66 N99d406602a274f7d97ec62e40b0ed360 schema:name doi
67 schema:value 10.1007/s10998-006-0002-7
68 rdf:type schema:PropertyValue
69 Nacc00e7f99974f52b45c923efac40aeb rdf:first sg:person.012140615123.03
70 rdf:rest rdf:nil
71 Ndda89d223eb54e9f882c0910f7dda04b schema:volumeNumber 52
72 rdf:type schema:PublicationVolume
73 Nf9964b838d224219987efa4d00bf7713 rdf:first sg:person.012747025157.36
74 rdf:rest N8b45a6f41923411c9006a42577eaf0e5
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1136293 schema:issn 0031-5303
82 1588-2829
83 schema:name Periodica Mathematica Hungarica
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
87 schema:familyName Akiyama
88 schema:givenName Shigeki
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
90 rdf:type schema:Person
91 sg:person.012140615123.03 schema:affiliation grid-institutes:grid.5329.d
92 schema:familyName Steiner
93 schema:givenName Wolfgang
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03
95 rdf:type schema:Person
96 sg:person.012747025157.36 schema:affiliation grid-institutes:None
97 schema:familyName Brunotte
98 schema:givenName Horst
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747025157.36
100 rdf:type schema:Person
101 sg:person.013334020373.46 schema:affiliation grid-institutes:grid.7122.6
102 schema:familyName Pethő
103 schema:givenName Attila
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46
105 rdf:type schema:Person
106 grid-institutes:None schema:alternateName Haus-Endt-Straße 88, D-40593 Düsseldorf, Germany
107 schema:name Haus-Endt-Straße 88, D-40593 Düsseldorf, Germany
108 rdf:type schema:Organization
109 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan
110 schema:name Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan
111 rdf:type schema:Organization
112 grid-institutes:grid.5329.d schema:alternateName Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
113 schema:name Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
114 rdf:type schema:Organization
115 grid-institutes:grid.7122.6 schema:alternateName Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
116 schema:name Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...