Ontology type: schema:ScholarlyArticle Open Access: True
2006-03
AUTHORSShigeki Akiyama, Horst Brunotte, Attila Pethő, Wolfgang Steiner
ABSTRACT
The periodicity of sequences of integers
1-17
http://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7
DOIhttp://dx.doi.org/10.1007/s10998-006-0002-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046571840
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan",
"id": "http://www.grid.ac/institutes/grid.260975.f",
"name": [
"Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Haus-Endt-Stra\u00dfe 88, D-40593 D\u00fcsseldorf, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Haus-Endt-Stra\u00dfe 88, D-40593 D\u00fcsseldorf, Germany"
],
"type": "Organization"
},
"familyName": "Brunotte",
"givenName": "Horst",
"id": "sg:person.012747025157.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747025157.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary",
"id": "http://www.grid.ac/institutes/grid.7122.6",
"name": [
"Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary"
],
"type": "Organization"
},
"familyName": "Peth\u0151",
"givenName": "Attila",
"id": "sg:person.013334020373.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Diskrete Mathematik und Geometrie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040 Wien, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institut f\u00fcr Diskrete Mathematik und Geometrie, Technische Universit\u00e4t Wien, Wiedner Hauptstra\u00dfe 8-10, A-1040 Wien, Austria"
],
"type": "Organization"
},
"familyName": "Steiner",
"givenName": "Wolfgang",
"id": "sg:person.012140615123.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03"
],
"type": "Person"
}
],
"datePublished": "2006-03",
"datePublishedReg": "2006-03-01",
"description": "The periodicity of sequences of integers ]]>]]>]]>]]>]]>]]>]]>(a_{n})_{n\\in\\mathbb Z}$ satisfying the inequalities ]]> 0 \\le a_{n-1}+\\lambda a_n +a_{n+1} < 1 \\ (n \\in {\\mathbb Z}) $$ is studied for real $ \\lambda $ with $|\\lambda|< 2$. Periodicity is proved in case $ \\lambda $ is the golden ratio; for other values of $ \\lambda $ statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers.",
"genre": "article",
"id": "sg:pub.10.1007/s10998-006-0002-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136293",
"issn": [
"0031-5303",
"1588-2829"
],
"name": "Periodica Mathematica Hungarica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "52"
}
],
"keywords": [
"cases",
"period",
"ID",
"ratio",
"investigation",
"number",
"period length",
"length",
"results",
"values",
"statements",
"sequence",
"further interesting result",
"morphology",
"system",
"problem",
"InlineEquation ID",
"interesting results",
"periodicity",
"inequality",
"golden ratio",
"remarks",
"Salem numbers",
"integers",
"shift radix systems",
"conjecture",
"certain integer sequences",
"integer sequences",
"radix systems"
],
"name": "Remarks on a conjecture on certain integer sequences",
"pagination": "1-17",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046571840"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10998-006-0002-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10998-006-0002-7",
"https://app.dimensions.ai/details/publication/pub.1046571840"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:56",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_417.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10998-006-0002-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10998-006-0002-7'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
21 PREDICATES
55 URIs
47 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10998-006-0002-7 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N2c6c244132134e1cb44d8d05fac96dd8 |
4 | ″ | schema:datePublished | 2006-03 |
5 | ″ | schema:datePublishedReg | 2006-03-01 |
6 | ″ | schema:description | The periodicity of sequences of integers <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>(a_{n})_{n\in\mathbb Z}$ satisfying the inequalities <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> 0 \le a_{n-1}+\lambda a_n +a_{n+1} < 1 \ (n \in {\mathbb Z}) $$ is studied for real $ \lambda $ with $|\lambda|< 2$. Periodicity is proved in case $ \lambda $ is the golden ratio; for other values of $ \lambda $ statements on possible period lengths are given. Further interesting results on the morphology of periods are illustrated. The problem is connected to the investigation of shift radix systems and of Salem numbers. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | true |
10 | ″ | schema:isPartOf | N2af81244bfe34c73b924d6208a8ba156 |
11 | ″ | ″ | Ndda89d223eb54e9f882c0910f7dda04b |
12 | ″ | ″ | sg:journal.1136293 |
13 | ″ | schema:keywords | ID |
14 | ″ | ″ | InlineEquation ID |
15 | ″ | ″ | Salem numbers |
16 | ″ | ″ | cases |
17 | ″ | ″ | certain integer sequences |
18 | ″ | ″ | conjecture |
19 | ″ | ″ | further interesting result |
20 | ″ | ″ | golden ratio |
21 | ″ | ″ | inequality |
22 | ″ | ″ | integer sequences |
23 | ″ | ″ | integers |
24 | ″ | ″ | interesting results |
25 | ″ | ″ | investigation |
26 | ″ | ″ | length |
27 | ″ | ″ | morphology |
28 | ″ | ″ | number |
29 | ″ | ″ | period |
30 | ″ | ″ | period length |
31 | ″ | ″ | periodicity |
32 | ″ | ″ | problem |
33 | ″ | ″ | radix systems |
34 | ″ | ″ | ratio |
35 | ″ | ″ | remarks |
36 | ″ | ″ | results |
37 | ″ | ″ | sequence |
38 | ″ | ″ | shift radix systems |
39 | ″ | ″ | statements |
40 | ″ | ″ | system |
41 | ″ | ″ | values |
42 | ″ | schema:name | Remarks on a conjecture on certain integer sequences |
43 | ″ | schema:pagination | 1-17 |
44 | ″ | schema:productId | N194194204f434708a073cdbbb92fa1e8 |
45 | ″ | ″ | N99d406602a274f7d97ec62e40b0ed360 |
46 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046571840 |
47 | ″ | ″ | https://doi.org/10.1007/s10998-006-0002-7 |
48 | ″ | schema:sdDatePublished | 2022-05-10T09:56 |
49 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
50 | ″ | schema:sdPublisher | N1fae292ecf71408aab4d7d3d606ee616 |
51 | ″ | schema:url | https://doi.org/10.1007/s10998-006-0002-7 |
52 | ″ | sgo:license | sg:explorer/license/ |
53 | ″ | sgo:sdDataset | articles |
54 | ″ | rdf:type | schema:ScholarlyArticle |
55 | N194194204f434708a073cdbbb92fa1e8 | schema:name | dimensions_id |
56 | ″ | schema:value | pub.1046571840 |
57 | ″ | rdf:type | schema:PropertyValue |
58 | N1fae292ecf71408aab4d7d3d606ee616 | schema:name | Springer Nature - SN SciGraph project |
59 | ″ | rdf:type | schema:Organization |
60 | N2af81244bfe34c73b924d6208a8ba156 | schema:issueNumber | 1 |
61 | ″ | rdf:type | schema:PublicationIssue |
62 | N2c6c244132134e1cb44d8d05fac96dd8 | rdf:first | sg:person.011153327405.03 |
63 | ″ | rdf:rest | Nf9964b838d224219987efa4d00bf7713 |
64 | N8b45a6f41923411c9006a42577eaf0e5 | rdf:first | sg:person.013334020373.46 |
65 | ″ | rdf:rest | Nacc00e7f99974f52b45c923efac40aeb |
66 | N99d406602a274f7d97ec62e40b0ed360 | schema:name | doi |
67 | ″ | schema:value | 10.1007/s10998-006-0002-7 |
68 | ″ | rdf:type | schema:PropertyValue |
69 | Nacc00e7f99974f52b45c923efac40aeb | rdf:first | sg:person.012140615123.03 |
70 | ″ | rdf:rest | rdf:nil |
71 | Ndda89d223eb54e9f882c0910f7dda04b | schema:volumeNumber | 52 |
72 | ″ | rdf:type | schema:PublicationVolume |
73 | Nf9964b838d224219987efa4d00bf7713 | rdf:first | sg:person.012747025157.36 |
74 | ″ | rdf:rest | N8b45a6f41923411c9006a42577eaf0e5 |
75 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Mathematical Sciences |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Pure Mathematics |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | sg:journal.1136293 | schema:issn | 0031-5303 |
82 | ″ | ″ | 1588-2829 |
83 | ″ | schema:name | Periodica Mathematica Hungarica |
84 | ″ | schema:publisher | Springer Nature |
85 | ″ | rdf:type | schema:Periodical |
86 | sg:person.011153327405.03 | schema:affiliation | grid-institutes:grid.260975.f |
87 | ″ | schema:familyName | Akiyama |
88 | ″ | schema:givenName | Shigeki |
89 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03 |
90 | ″ | rdf:type | schema:Person |
91 | sg:person.012140615123.03 | schema:affiliation | grid-institutes:grid.5329.d |
92 | ″ | schema:familyName | Steiner |
93 | ″ | schema:givenName | Wolfgang |
94 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012140615123.03 |
95 | ″ | rdf:type | schema:Person |
96 | sg:person.012747025157.36 | schema:affiliation | grid-institutes:None |
97 | ″ | schema:familyName | Brunotte |
98 | ″ | schema:givenName | Horst |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012747025157.36 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.013334020373.46 | schema:affiliation | grid-institutes:grid.7122.6 |
102 | ″ | schema:familyName | Pethő |
103 | ″ | schema:givenName | Attila |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46 |
105 | ″ | rdf:type | schema:Person |
106 | grid-institutes:None | schema:alternateName | Haus-Endt-Straße 88, D-40593 Düsseldorf, Germany |
107 | ″ | schema:name | Haus-Endt-Straße 88, D-40593 Düsseldorf, Germany |
108 | ″ | rdf:type | schema:Organization |
109 | grid-institutes:grid.260975.f | schema:alternateName | Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan |
110 | ″ | schema:name | Department of Mathematics, Faculty of Science Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan |
111 | ″ | rdf:type | schema:Organization |
112 | grid-institutes:grid.5329.d | schema:alternateName | Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria |
113 | ″ | schema:name | Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria |
114 | ″ | rdf:type | schema:Organization |
115 | grid-institutes:grid.7122.6 | schema:alternateName | Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary |
116 | ″ | schema:name | Faculty of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary |
117 | ″ | rdf:type | schema:Organization |