State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005–2012 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Evan Jin, Rishi Agrawal

ABSTRACT

Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p < 0.05), with Florida trending upward with borderline statistical significance (p = 0.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes. More... »

PAGES

2149-2152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z

DOI

http://dx.doi.org/10.1007/s10995-017-2330-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090946922

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28770386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Policy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nursing Homes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Residence Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lurie Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413808.6", 
          "name": [
            "Ann and Robert H Lurie Children\u2019s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Evan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lurie Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413808.6", 
          "name": [
            "Ann and Robert H Lurie Children\u2019s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "Rishi", 
        "id": "sg:person.0604203466.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604203466.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1542/peds.2014-2279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020496556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-3620929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-3620929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-2822634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024317772"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p\u2009<\u20090.05), with Florida trending upward with borderline statistical significance (p\u2009=\u20090.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10995-017-2330-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1117494", 
        "issn": [
          "1092-7875", 
          "1573-6628"
        ], 
        "name": "Maternal and Child Health Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005\u20132012", 
    "pagination": "2149-2152", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a59ff5ee61d3957ef0e93dce2a93bec6982c56a1c022af277937e147ece30c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28770386"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9715672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10995-017-2330-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090946922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10995-017-2330-z", 
      "https://app.dimensions.ai/details/publication/pub.1090946922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10995-017-2330-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      47 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10995-017-2330-z schema:about N244388ed68d34e0886be4d115e5de806
2 N3db0f6d34e2f4678a2fe459e7ef9fbe2
3 N4a411fe516d74c8fbac083ae0d039925
4 N4b4a43032ec24bc88d48e92372dd069b
5 N53c18f610c3a49bab869d2c0bdcd0e64
6 N65058975fbfe46b2986d0e1c8f484b9c
7 N82ad560e35014382870092a07e20658b
8 N85da6795c6c04c87941b5ec8062e7f05
9 N9232421d9d0e437d85f25a6f5ca2ee70
10 N962eaa955bd64db08b39bc72351e8234
11 Na0b88ae910024d9d8ea3dbaf34a256a9
12 Nc14e84690ff64505aaf670070ada4fb1
13 Nc154b0de709c4a20b2e0658e60f8e1b6
14 Nf7082707ffaa4c0ebf572c552f43cae7
15 Nf77d3ad2f7d146d59835e4becf03631c
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N885a3d70ef754730a416bfd1c4b9058d
19 schema:citation https://doi.org/10.1215/03616878-2822634
20 https://doi.org/10.1215/03616878-3620929
21 https://doi.org/10.1542/peds.2014-2279
22 schema:datePublished 2017-12
23 schema:datePublishedReg 2017-12-01
24 schema:description Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p < 0.05), with Florida trending upward with borderline statistical significance (p = 0.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N0a249f8b6351438ca4b302c1c155a2f8
29 N0bc0e53ad89e4163ba60c174ae6f5168
30 sg:journal.1117494
31 schema:name State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005–2012
32 schema:pagination 2149-2152
33 schema:productId N3d02aef7c4c84fe1af719a2a6400db4c
34 N698fa5edece342698650ce05c3378530
35 Nb42005baa8f048b3abcbdf74dfdc6bca
36 Nc7c0bd9ce8204e1a9b288f729f408753
37 Necd758e81ead43969ee1de086c5a4b19
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090946922
39 https://doi.org/10.1007/s10995-017-2330-z
40 schema:sdDatePublished 2019-04-11T10:33
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N779d6753dd5d4636847b970109fea9cc
43 schema:url https://link.springer.com/10.1007%2Fs10995-017-2330-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0a249f8b6351438ca4b302c1c155a2f8 schema:issueNumber 12
48 rdf:type schema:PublicationIssue
49 N0bc0e53ad89e4163ba60c174ae6f5168 schema:volumeNumber 21
50 rdf:type schema:PublicationVolume
51 N244388ed68d34e0886be4d115e5de806 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
52 schema:name Prevalence
53 rdf:type schema:DefinedTerm
54 N3d02aef7c4c84fe1af719a2a6400db4c schema:name dimensions_id
55 schema:value pub.1090946922
56 rdf:type schema:PropertyValue
57 N3db0f6d34e2f4678a2fe459e7ef9fbe2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Nursing Homes
59 rdf:type schema:DefinedTerm
60 N4636a6e4ef3346caa1fee3376183c39f schema:affiliation https://www.grid.ac/institutes/grid.413808.6
61 schema:familyName Jin
62 schema:givenName Evan
63 rdf:type schema:Person
64 N4a411fe516d74c8fbac083ae0d039925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Adult
66 rdf:type schema:DefinedTerm
67 N4b4a43032ec24bc88d48e92372dd069b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Child, Preschool
69 rdf:type schema:DefinedTerm
70 N53c18f610c3a49bab869d2c0bdcd0e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Residence Characteristics
72 rdf:type schema:DefinedTerm
73 N65058975fbfe46b2986d0e1c8f484b9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 N698fa5edece342698650ce05c3378530 schema:name pubmed_id
77 schema:value 28770386
78 rdf:type schema:PropertyValue
79 N779d6753dd5d4636847b970109fea9cc schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N82ad560e35014382870092a07e20658b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name United States
83 rdf:type schema:DefinedTerm
84 N85da6795c6c04c87941b5ec8062e7f05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Retrospective Studies
86 rdf:type schema:DefinedTerm
87 N885a3d70ef754730a416bfd1c4b9058d rdf:first N4636a6e4ef3346caa1fee3376183c39f
88 rdf:rest Na89d6b33a33b4fa286e2f1d395297e48
89 N9232421d9d0e437d85f25a6f5ca2ee70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Infant, Newborn
91 rdf:type schema:DefinedTerm
92 N962eaa955bd64db08b39bc72351e8234 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Infant
94 rdf:type schema:DefinedTerm
95 Na0b88ae910024d9d8ea3dbaf34a256a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Child
97 rdf:type schema:DefinedTerm
98 Na89d6b33a33b4fa286e2f1d395297e48 rdf:first sg:person.0604203466.08
99 rdf:rest rdf:nil
100 Nb42005baa8f048b3abcbdf74dfdc6bca schema:name nlm_unique_id
101 schema:value 9715672
102 rdf:type schema:PropertyValue
103 Nc14e84690ff64505aaf670070ada4fb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Health Policy
105 rdf:type schema:DefinedTerm
106 Nc154b0de709c4a20b2e0658e60f8e1b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Young Adult
108 rdf:type schema:DefinedTerm
109 Nc7c0bd9ce8204e1a9b288f729f408753 schema:name doi
110 schema:value 10.1007/s10995-017-2330-z
111 rdf:type schema:PropertyValue
112 Necd758e81ead43969ee1de086c5a4b19 schema:name readcube_id
113 schema:value 9a59ff5ee61d3957ef0e93dce2a93bec6982c56a1c022af277937e147ece30c4
114 rdf:type schema:PropertyValue
115 Nf7082707ffaa4c0ebf572c552f43cae7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Male
117 rdf:type schema:DefinedTerm
118 Nf77d3ad2f7d146d59835e4becf03631c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adolescent
120 rdf:type schema:DefinedTerm
121 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
122 schema:name Medical and Health Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
125 schema:name Public Health and Health Services
126 rdf:type schema:DefinedTerm
127 sg:journal.1117494 schema:issn 1092-7875
128 1573-6628
129 schema:name Maternal and Child Health Journal
130 rdf:type schema:Periodical
131 sg:person.0604203466.08 schema:affiliation https://www.grid.ac/institutes/grid.413808.6
132 schema:familyName Agrawal
133 schema:givenName Rishi
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604203466.08
135 rdf:type schema:Person
136 https://doi.org/10.1215/03616878-2822634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024317772
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1215/03616878-3620929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422704
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1542/peds.2014-2279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020496556
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.413808.6 schema:alternateName Lurie Children's Hospital
143 schema:name Ann and Robert H Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...