State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005–2012 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12

AUTHORS

Evan Jin, Rishi Agrawal

ABSTRACT

Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p < 0.05), with Florida trending upward with borderline statistical significance (p = 0.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes. More... »

PAGES

2149-2152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z

DOI

http://dx.doi.org/10.1007/s10995-017-2330-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090946922

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28770386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Policy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nursing Homes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prevalence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Residence Characteristics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United States", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lurie Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413808.6", 
          "name": [
            "Ann and Robert H Lurie Children\u2019s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Evan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lurie Children's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.413808.6", 
          "name": [
            "Ann and Robert H Lurie Children\u2019s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrawal", 
        "givenName": "Rishi", 
        "id": "sg:person.0604203466.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604203466.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1542/peds.2014-2279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020496556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-3620929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-3620929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/03616878-2822634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024317772"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p\u2009<\u20090.05), with Florida trending upward with borderline statistical significance (p\u2009=\u20090.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10995-017-2330-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1117494", 
        "issn": [
          "1092-7875", 
          "1573-6628"
        ], 
        "name": "Maternal and Child Health Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005\u20132012", 
    "pagination": "2149-2152", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9a59ff5ee61d3957ef0e93dce2a93bec6982c56a1c022af277937e147ece30c4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28770386"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9715672"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10995-017-2330-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090946922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10995-017-2330-z", 
      "https://app.dimensions.ai/details/publication/pub.1090946922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113658_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10995-017-2330-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10995-017-2330-z'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      47 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10995-017-2330-z schema:about N215f55b5a1fb4dd49b4e0390e9634b68
2 N327f2b755cf44a0b8a64796ce0a0512f
3 N3b9753ff331f4f07b0513d9701f342f8
4 N3f69e1de5e454c11a8793783cb3b69a9
5 N47f88a5ec94e4573b06b0d848a1af659
6 N5085624411a749618ee43b8479e9014c
7 N5b04a86afd884452b7cbf3cd26b795dc
8 N62bce50ff8204b5fa42bb2bca17ab171
9 N78411a2d33fc4d1f9498e6129089c462
10 N787369113d03415184e822624702c0f2
11 N9db72482e413402b9aa1f268a277f46e
12 Na1ee85211de141f48670fba9f2f7d9e1
13 Nd117f3fa0d8c47dbaf9b835afd840f91
14 Nd2d37128443d47d7a76e09f775de704b
15 Nea12370259b146ed9a2a14750007e4ef
16 anzsrc-for:11
17 anzsrc-for:1117
18 schema:author N4d071b86794b404292d82faf9bcbf958
19 schema:citation https://doi.org/10.1215/03616878-2822634
20 https://doi.org/10.1215/03616878-3620929
21 https://doi.org/10.1542/peds.2014-2279
22 schema:datePublished 2017-12
23 schema:datePublishedReg 2017-12-01
24 schema:description Objectives One goal of Healthy People 2020 is to reduce the number of children and young adults living in nursing homes. However, little is known about the prevalence of nursing home use among children and young adults on a state-by-state basis. The objective of this study was to determine the prevalence of nursing home use among children and young adults in each state from 2005 to 2012. The study also looked for prevalence trends between 2005 and 2012. Methods The Centers for Medicare and Medicaid Services Minimum Data Set and US Census data were used to calculate the prevalence of nursing home residents among children and young adults aged 0-30 in each US state in 2012 and assess trends in each state from 2005 to 2012. Results In 2012, the prevalence of nursing home residents among children and young adults aged 0-30 varied across states, ranging from 14 in 100,000 (New Jersey) to 0.8 in 100,000 (Alaska). Testing for trends from 2005 to 2012 also revealed significant trends (p < 0.05), with Florida trending upward with borderline statistical significance (p = 0.05) and six states trending downward. Conclusion There is wide variation in the prevalence of nursing home residents among children and young adults aged 0-30 across states. There is also variation in the nursing home prevalence trends across states. Observed variations may represent potential opportunities for some states to reduce their population of children and young adults in nursing homes.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N203c2023633e490986ad77631fa94706
29 Nfdb2449423cf4ff9a2b32e940791ee0f
30 sg:journal.1117494
31 schema:name State-by-State Variation in the Number of Children and Young Adults in Nursing Homes, 2005–2012
32 schema:pagination 2149-2152
33 schema:productId N0a53c355f68547eb9b9652aea254df46
34 N3034d1d92b914dfe8211360c376d65be
35 N8b1b4f0e5c2f4f0b8d3e0e74c5fc398e
36 Naf5d1ce1d15941db93ea7eec9a5c9b23
37 Naff700699cfb45e4a6da1ec2026b7774
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090946922
39 https://doi.org/10.1007/s10995-017-2330-z
40 schema:sdDatePublished 2019-04-11T10:33
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N47c3dbc7d7804b008ddda8b6caceb186
43 schema:url https://link.springer.com/10.1007%2Fs10995-017-2330-z
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0a53c355f68547eb9b9652aea254df46 schema:name nlm_unique_id
48 schema:value 9715672
49 rdf:type schema:PropertyValue
50 N203c2023633e490986ad77631fa94706 schema:issueNumber 12
51 rdf:type schema:PublicationIssue
52 N215f55b5a1fb4dd49b4e0390e9634b68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
53 schema:name Young Adult
54 rdf:type schema:DefinedTerm
55 N3034d1d92b914dfe8211360c376d65be schema:name dimensions_id
56 schema:value pub.1090946922
57 rdf:type schema:PropertyValue
58 N327f2b755cf44a0b8a64796ce0a0512f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Child, Preschool
60 rdf:type schema:DefinedTerm
61 N3b9753ff331f4f07b0513d9701f342f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Humans
63 rdf:type schema:DefinedTerm
64 N3f69e1de5e454c11a8793783cb3b69a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Infant, Newborn
66 rdf:type schema:DefinedTerm
67 N47c3dbc7d7804b008ddda8b6caceb186 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N47f88a5ec94e4573b06b0d848a1af659 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Residence Characteristics
71 rdf:type schema:DefinedTerm
72 N4d071b86794b404292d82faf9bcbf958 rdf:first Ncbd42272fce24bfea80eefc71db33f42
73 rdf:rest Ne9f81e3d8ebb40e49749809ce4752c03
74 N5085624411a749618ee43b8479e9014c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Infant
76 rdf:type schema:DefinedTerm
77 N5b04a86afd884452b7cbf3cd26b795dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Adult
79 rdf:type schema:DefinedTerm
80 N62bce50ff8204b5fa42bb2bca17ab171 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Adolescent
82 rdf:type schema:DefinedTerm
83 N78411a2d33fc4d1f9498e6129089c462 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Child
85 rdf:type schema:DefinedTerm
86 N787369113d03415184e822624702c0f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name United States
88 rdf:type schema:DefinedTerm
89 N8b1b4f0e5c2f4f0b8d3e0e74c5fc398e schema:name pubmed_id
90 schema:value 28770386
91 rdf:type schema:PropertyValue
92 N9db72482e413402b9aa1f268a277f46e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Health Policy
94 rdf:type schema:DefinedTerm
95 Na1ee85211de141f48670fba9f2f7d9e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Retrospective Studies
97 rdf:type schema:DefinedTerm
98 Naf5d1ce1d15941db93ea7eec9a5c9b23 schema:name doi
99 schema:value 10.1007/s10995-017-2330-z
100 rdf:type schema:PropertyValue
101 Naff700699cfb45e4a6da1ec2026b7774 schema:name readcube_id
102 schema:value 9a59ff5ee61d3957ef0e93dce2a93bec6982c56a1c022af277937e147ece30c4
103 rdf:type schema:PropertyValue
104 Ncbd42272fce24bfea80eefc71db33f42 schema:affiliation https://www.grid.ac/institutes/grid.413808.6
105 schema:familyName Jin
106 schema:givenName Evan
107 rdf:type schema:Person
108 Nd117f3fa0d8c47dbaf9b835afd840f91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Male
110 rdf:type schema:DefinedTerm
111 Nd2d37128443d47d7a76e09f775de704b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Nursing Homes
113 rdf:type schema:DefinedTerm
114 Ne9f81e3d8ebb40e49749809ce4752c03 rdf:first sg:person.0604203466.08
115 rdf:rest rdf:nil
116 Nea12370259b146ed9a2a14750007e4ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Prevalence
118 rdf:type schema:DefinedTerm
119 Nfdb2449423cf4ff9a2b32e940791ee0f schema:volumeNumber 21
120 rdf:type schema:PublicationVolume
121 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
122 schema:name Medical and Health Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
125 schema:name Public Health and Health Services
126 rdf:type schema:DefinedTerm
127 sg:journal.1117494 schema:issn 1092-7875
128 1573-6628
129 schema:name Maternal and Child Health Journal
130 rdf:type schema:Periodical
131 sg:person.0604203466.08 schema:affiliation https://www.grid.ac/institutes/grid.413808.6
132 schema:familyName Agrawal
133 schema:givenName Rishi
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604203466.08
135 rdf:type schema:Person
136 https://doi.org/10.1215/03616878-2822634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024317772
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1215/03616878-3620929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422704
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1542/peds.2014-2279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020496556
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.413808.6 schema:alternateName Lurie Children's Hospital
143 schema:name Ann and Robert H Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, 60611, Chicago, IL, USA
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...