A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Marc Boullé, Clément Charnay, Nicolas Lachiche

ABSTRACT

Companies want to extract value from their relational databases. This is the aim of relational data mining. Propositionalization is one possible approach to relational data mining. Propositionalization adds new attributes, called features, to the main table, leading to an attribute-value representation, a single table, on which a propositional learner can be applied. However, current relational databases are large and composed of mixed, numerical and categorical, data. Moreover, the specificity of relational data is to involve one-to-many relationships. As an example of such data, consider customers purchasing products: each customer can purchase several products. Therefore, there is a need for techniques able to learn complex aggregates. Learning such features means to explore a combinatorial, possibly infinite, space and such an approach is prone to overfitting. We introduce a propositionalization approach dedicated to a robust Bayesian classifier. It efficiently samples a given number of features in the language bias, following a distribution over the complex aggregates. This distribution is also used to penalize complex aggregates in the regularization of the robust Bayesian classifier. Experiments show that it performs better than state-of-the-art methods on most investigated benchmarks and can deal with large datasets more easily. A new real, large, mixed relational dataset is introduced which confirms the ability of our approach to learn complex aggregates. More... »

PAGES

229-266

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-018-5746-9

DOI

http://dx.doi.org/10.1007/s10994-018-5746-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106288424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, 2 avenue Pierre Marzin, 22300, Lannion, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boull\u00e9", 
        "givenName": "Marc", 
        "id": "sg:person.012201063231.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201063231.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des sciences de l'ing\u00e9nieur de l'informatique et de l'imagerie", 
          "id": "https://www.grid.ac/institutes/grid.463766.6", 
          "name": [
            "ICube, Universit\u00e9 de Strasbourg, 300 Boulevard Brant, 67412, Illkirch, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charnay", 
        "givenName": "Cl\u00e9ment", 
        "id": "sg:person.011330347124.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330347124.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des sciences de l'ing\u00e9nieur de l'informatique et de l'imagerie", 
          "id": "https://www.grid.ac/institutes/grid.463766.6", 
          "name": [
            "ICube, Universit\u00e9 de Strasbourg, 300 Boulevard Brant, 67412, Illkirch, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lachiche", 
        "givenName": "Nicolas", 
        "id": "sg:person.015771271331.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771271331.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10994-006-8364-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000717844", 
          "https://doi.org/10.1007/s10994-006-8364-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14400-4_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004755521", 
          "https://doi.org/10.1007/978-3-642-14400-4_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14400-4_45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004755521", 
          "https://doi.org/10.1007/978-3-642-14400-4_45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000039778.69032.ab", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006773373", 
          "https://doi.org/10.1023/b:mach.0000039778.69032.ab"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36468-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009720708", 
          "https://doi.org/10.1007/3-540-36468-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36468-4_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009720708", 
          "https://doi.org/10.1007/3-540-36468-4_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0027312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011223263", 
          "https://doi.org/10.1007/bfb0027312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/088395198117686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011832436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(98)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017069030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017496121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5193-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017986780", 
          "https://doi.org/10.1007/s10994-010-5193-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44794-6_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763811", 
          "https://doi.org/10.1007/3-540-44794-6_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-7502-7_686-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022227296", 
          "https://doi.org/10.1007/978-1-4899-7502-7_686-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mach.0000039777.23772.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024224088", 
          "https://doi.org/10.1023/b:mach.0000039777.23772.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44848-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028642948", 
          "https://doi.org/10.1007/978-3-662-44848-9_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26532-2_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030154639", 
          "https://doi.org/10.1007/978-3-319-26532-2_74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-8713-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030962507", 
          "https://doi.org/10.1007/s10994-006-8713-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3147.3165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031832894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0017020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033013144", 
          "https://doi.org/10.1007/bfb0017020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-5834-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035759002", 
          "https://doi.org/10.1007/s10994-006-5834-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-5834-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035759002", 
          "https://doi.org/10.1007/s10994-006-5834-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-013-5392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286740", 
          "https://doi.org/10.1007/s10994-013-5392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-013-5392-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036286740", 
          "https://doi.org/10.1007/s10994-013-5392-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.05.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039373694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-010-5208-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041916398", 
          "https://doi.org/10.1007/s10994-010-5208-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1090193.1090200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044512386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045859406", 
          "https://doi.org/10.1007/978-3-662-04599-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04599-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045859406", 
          "https://doi.org/10.1007/978-3-662-04599-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44797-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050417390", 
          "https://doi.org/10.1007/3-540-44797-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39804-2_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053085525", 
          "https://doi.org/10.1007/978-3-540-39804-2_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176346150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdsp.2013.6622721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094546772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2004.1320014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094679685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Companies want to extract value from their relational databases. This is the aim of relational data mining. Propositionalization is one possible approach to relational data mining. Propositionalization adds new attributes, called features, to the main table, leading to an attribute-value representation, a single table, on which a propositional learner can be applied. However, current relational databases are large and composed of mixed, numerical and categorical, data. Moreover, the specificity of relational data is to involve one-to-many relationships. As an example of such data, consider customers purchasing products: each customer can purchase several products. Therefore, there is a need for techniques able to learn complex aggregates. Learning such features means to explore a combinatorial, possibly infinite, space and such an approach is prone to overfitting. We introduce a propositionalization approach dedicated to a robust Bayesian classifier. It efficiently samples a given number of features in the language bias, following a distribution over the complex aggregates. This distribution is also used to penalize complex aggregates in the regularization of the robust Bayesian classifier. Experiments show that it performs better than state-of-the-art methods on most investigated benchmarks and can deal with large datasets more easily. A new real, large, mixed relational dataset is introduced which confirms the ability of our approach to learn complex aggregates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-018-5746-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "name": "A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data", 
    "pagination": "229-266", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e935711513c9a636573e9985b72f4ec9cf3f32cd3b7fcdd769d2d5460e80687"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-018-5746-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106288424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-018-5746-9", 
      "https://app.dimensions.ai/details/publication/pub.1106288424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10994-018-5746-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5746-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5746-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5746-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5746-9'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-018-5746-9 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc6f18629814d43c6851403925ba91c15
4 schema:citation sg:pub.10.1007/3-540-36468-4_9
5 sg:pub.10.1007/3-540-44794-6_23
6 sg:pub.10.1007/3-540-44797-0_12
7 sg:pub.10.1007/978-1-4899-4541-9
8 sg:pub.10.1007/978-1-4899-7502-7_686-1
9 sg:pub.10.1007/978-3-319-26532-2_74
10 sg:pub.10.1007/978-3-540-39804-2_11
11 sg:pub.10.1007/978-3-642-14400-4_45
12 sg:pub.10.1007/978-3-662-04599-2
13 sg:pub.10.1007/978-3-662-44848-9_12
14 sg:pub.10.1007/bfb0017020
15 sg:pub.10.1007/bfb0027312
16 sg:pub.10.1007/s10994-006-5834-0
17 sg:pub.10.1007/s10994-006-8364-x
18 sg:pub.10.1007/s10994-006-8713-9
19 sg:pub.10.1007/s10994-010-5193-8
20 sg:pub.10.1007/s10994-010-5208-5
21 sg:pub.10.1007/s10994-013-5392-1
22 sg:pub.10.1023/b:mach.0000039777.23772.30
23 sg:pub.10.1023/b:mach.0000039778.69032.ab
24 https://app.dimensions.ai/details/publication/pub.1109705929
25 https://doi.org/10.1002/0471200611
26 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
27 https://doi.org/10.1016/0005-1098(78)90005-5
28 https://doi.org/10.1016/j.eswa.2015.04.017
29 https://doi.org/10.1016/j.eswa.2015.05.053
30 https://doi.org/10.1016/s0004-3702(98)00034-4
31 https://doi.org/10.1080/088395198117686
32 https://doi.org/10.1109/icde.2004.1320014
33 https://doi.org/10.1109/icdsp.2013.6622721
34 https://doi.org/10.1145/1090193.1090200
35 https://doi.org/10.1145/3147.3165
36 https://doi.org/10.1214/aos/1176346150
37 schema:datePublished 2019-02
38 schema:datePublishedReg 2019-02-01
39 schema:description Companies want to extract value from their relational databases. This is the aim of relational data mining. Propositionalization is one possible approach to relational data mining. Propositionalization adds new attributes, called features, to the main table, leading to an attribute-value representation, a single table, on which a propositional learner can be applied. However, current relational databases are large and composed of mixed, numerical and categorical, data. Moreover, the specificity of relational data is to involve one-to-many relationships. As an example of such data, consider customers purchasing products: each customer can purchase several products. Therefore, there is a need for techniques able to learn complex aggregates. Learning such features means to explore a combinatorial, possibly infinite, space and such an approach is prone to overfitting. We introduce a propositionalization approach dedicated to a robust Bayesian classifier. It efficiently samples a given number of features in the language bias, following a distribution over the complex aggregates. This distribution is also used to penalize complex aggregates in the regularization of the robust Bayesian classifier. Experiments show that it performs better than state-of-the-art methods on most investigated benchmarks and can deal with large datasets more easily. A new real, large, mixed relational dataset is introduced which confirms the ability of our approach to learn complex aggregates.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N8cd0a235d1104dd5b98047d4e73c5120
44 Nf4d08d6bfc50474d80b89aeea4c5442c
45 sg:journal.1125588
46 schema:name A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data
47 schema:pagination 229-266
48 schema:productId N13072e0b8b9f489ba3fb2ceb3276a7c1
49 N3103c34afcab42e198dd10d9943f1821
50 N663482ce5b81430b9a710ad26ac42bf7
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106288424
52 https://doi.org/10.1007/s10994-018-5746-9
53 schema:sdDatePublished 2019-04-11T10:38
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N289ea3c748d347e4831d95d57621679e
56 schema:url https://link.springer.com/10.1007%2Fs10994-018-5746-9
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N13072e0b8b9f489ba3fb2ceb3276a7c1 schema:name dimensions_id
61 schema:value pub.1106288424
62 rdf:type schema:PropertyValue
63 N17cdd4aeb7b1498ea97bdc7fbe88cbfa rdf:first sg:person.011330347124.80
64 rdf:rest N2dcd9cf7a0a946799242b3121f3ee45d
65 N289ea3c748d347e4831d95d57621679e schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N2dcd9cf7a0a946799242b3121f3ee45d rdf:first sg:person.015771271331.96
68 rdf:rest rdf:nil
69 N3103c34afcab42e198dd10d9943f1821 schema:name doi
70 schema:value 10.1007/s10994-018-5746-9
71 rdf:type schema:PropertyValue
72 N663482ce5b81430b9a710ad26ac42bf7 schema:name readcube_id
73 schema:value 8e935711513c9a636573e9985b72f4ec9cf3f32cd3b7fcdd769d2d5460e80687
74 rdf:type schema:PropertyValue
75 N8cd0a235d1104dd5b98047d4e73c5120 schema:volumeNumber 108
76 rdf:type schema:PublicationVolume
77 Nc6f18629814d43c6851403925ba91c15 rdf:first sg:person.012201063231.13
78 rdf:rest N17cdd4aeb7b1498ea97bdc7fbe88cbfa
79 Nf4d08d6bfc50474d80b89aeea4c5442c schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information Systems
86 rdf:type schema:DefinedTerm
87 sg:journal.1125588 schema:issn 0885-6125
88 1573-0565
89 schema:name Machine Learning
90 rdf:type schema:Periodical
91 sg:person.011330347124.80 schema:affiliation https://www.grid.ac/institutes/grid.463766.6
92 schema:familyName Charnay
93 schema:givenName Clément
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330347124.80
95 rdf:type schema:Person
96 sg:person.012201063231.13 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
97 schema:familyName Boullé
98 schema:givenName Marc
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201063231.13
100 rdf:type schema:Person
101 sg:person.015771271331.96 schema:affiliation https://www.grid.ac/institutes/grid.463766.6
102 schema:familyName Lachiche
103 schema:givenName Nicolas
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771271331.96
105 rdf:type schema:Person
106 sg:pub.10.1007/3-540-36468-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009720708
107 https://doi.org/10.1007/3-540-36468-4_9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-44794-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763811
110 https://doi.org/10.1007/3-540-44794-6_23
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/3-540-44797-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050417390
113 https://doi.org/10.1007/3-540-44797-0_12
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
116 https://doi.org/10.1007/978-1-4899-4541-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-1-4899-7502-7_686-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022227296
119 https://doi.org/10.1007/978-1-4899-7502-7_686-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-319-26532-2_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030154639
122 https://doi.org/10.1007/978-3-319-26532-2_74
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-540-39804-2_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053085525
125 https://doi.org/10.1007/978-3-540-39804-2_11
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-642-14400-4_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004755521
128 https://doi.org/10.1007/978-3-642-14400-4_45
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-662-04599-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045859406
131 https://doi.org/10.1007/978-3-662-04599-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-662-44848-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028642948
134 https://doi.org/10.1007/978-3-662-44848-9_12
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bfb0017020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033013144
137 https://doi.org/10.1007/bfb0017020
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bfb0027312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011223263
140 https://doi.org/10.1007/bfb0027312
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10994-006-5834-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035759002
143 https://doi.org/10.1007/s10994-006-5834-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10994-006-8364-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000717844
146 https://doi.org/10.1007/s10994-006-8364-x
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10994-006-8713-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030962507
149 https://doi.org/10.1007/s10994-006-8713-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10994-010-5193-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986780
152 https://doi.org/10.1007/s10994-010-5193-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10994-010-5208-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041916398
155 https://doi.org/10.1007/s10994-010-5208-5
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10994-013-5392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036286740
158 https://doi.org/10.1007/s10994-013-5392-1
159 rdf:type schema:CreativeWork
160 sg:pub.10.1023/b:mach.0000039777.23772.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024224088
161 https://doi.org/10.1023/b:mach.0000039777.23772.30
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/b:mach.0000039778.69032.ab schema:sameAs https://app.dimensions.ai/details/publication/pub.1006773373
164 https://doi.org/10.1023/b:mach.0000039778.69032.ab
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
167 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.eswa.2015.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017496121
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.eswa.2015.05.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039373694
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0004-3702(98)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017069030
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1080/088395198117686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011832436
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/icde.2004.1320014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094679685
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/icdsp.2013.6622721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094546772
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1090193.1090200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044512386
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/3147.3165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031832894
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1214/aos/1176346150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408049
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.463766.6 schema:alternateName Laboratoire des sciences de l'ingénieur de l'informatique et de l'imagerie
192 schema:name ICube, Université de Strasbourg, 300 Boulevard Brant, 67412, Illkirch, France
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
195 schema:name Orange Labs, 2 avenue Pierre Marzin, 22300, Lannion, France
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...