Ensembles for multi-target regression with random output selections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Martin Breskvar, Dragi Kocev, Sašo Džeroski

ABSTRACT

We address the task of multi-target regression, where we generate global models that simultaneously predict multiple continuous variables. We use ensembles of generalized decision trees, called predictive clustering trees (PCTs), in particular bagging and random forests (RF) of PCTs and extremely randomized PCTs (extra PCTs). We add another dimension of randomization to these ensemble methods by learning individual base models that consider random subsets of target variables, while leaving the input space randomizations (in RF PCTs and extra PCTs) intact. Moreover, we propose a new ensemble prediction aggregation function, where the final ensemble prediction for a given target is influenced only by those base models that considered it during learning. An extensive experimental evaluation on a range of benchmark datasets has been conducted, where the extended ensemble methods were compared to the original ensemble methods, individual multi-target regression trees, and ensembles of single-target regression trees in terms of predictive performance, running times and model sizes. The results show that the proposed ensemble extension can yield better predictive performance, reduce learning time or both, without a considerable change in model size. The newly proposed aggregation function gives best results when used with extremely randomized PCTs. We also include a comparison with three competing methods, namely random linear target combinations and two variants of random projections. More... »

PAGES

1673-1709

References to SciGraph publications

  • 2000-07. Predicting Chemical Parameters of River Water Quality from Bioindicator Data in APPLIED INTELLIGENCE
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2015. Ensembles of Extremely Randomized Trees for Multi-target Regression in DISCOVERY SCIENCE
  • 2006. Constraint Based Induction of Multi-objective Regression Trees in KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES
  • 2007. Ensembles of Multi-Objective Decision Trees in MACHINE LEARNING: ECML 2007
  • 2007. Stepwise Induction of Multi-target Model Trees in MACHINE LEARNING: ECML 2007
  • 1999. Simultaneous Prediction of Multiple Chemical Parameters of River Water Quality with TILDE in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • 2011. Network Regression with Predictive Clustering Trees in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2008-11. Decision trees for hierarchical multi-label classification in MACHINE LEARNING
  • 2016-08. The use of data-derived label hierarchies in multi-label classification in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 2016-09. Clusters of male and female Alzheimer’s disease patients in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database in BRAIN INFORMATICS
  • 2013. Position Preserving Multi-Output Prediction in ADVANCED INFORMATION SYSTEMS ENGINEERING
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • 2007-08. Future trends in data mining in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2014-09. Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering in DATA MINING AND KNOWLEDGE DISCOVERY
  • 1999-07. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants in MACHINE LEARNING
  • 2007. Random k-Labelsets: An Ensemble Method for Multilabel Classification in MACHINE LEARNING: ECML 2007
  • 2012-09. Network regression with predictive clustering trees in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2014. Multi-target Regression via Random Linear Target Combinations in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2014. Random Forests with Random Projections of the Output Space for High Dimensional Multi-label Classification in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2006-04. Extremely randomized trees in MACHINE LEARNING
  • 2015. Semi-supervised Learning for Multi-target Regression in NEW FRONTIERS IN MINING COMPLEX PATTERNS
  • 2016-07. Multi-target regression via input space expansion: treating targets as inputs in MACHINE LEARNING
  • 2007. Towards a General Framework for Data Mining in KNOWLEDGE DISCOVERY IN INDUCTIVE DATABASES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10994-018-5744-y

    DOI

    http://dx.doi.org/10.1007/s10994-018-5744-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105481920


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jo\u017eef Stefan International Postgraduate School", 
              "id": "https://www.grid.ac/institutes/grid.445211.7", 
              "name": [
                "Department of Knowledge Technologies, Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
                "Jo\u017eef Stefan International Postgraduate School, Ljubljana, Slovenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Breskvar", 
            "givenName": "Martin", 
            "id": "sg:person.07454260515.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454260515.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jo\u017eef Stefan International Postgraduate School", 
              "id": "https://www.grid.ac/institutes/grid.445211.7", 
              "name": [
                "Department of Knowledge Technologies, Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
                "Jo\u017eef Stefan International Postgraduate School, Ljubljana, Slovenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kocev", 
            "givenName": "Dragi", 
            "id": "sg:person.011142164517.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142164517.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jo\u017eef Stefan International Postgraduate School", 
              "id": "https://www.grid.ac/institutes/grid.445211.7", 
              "name": [
                "Department of Knowledge Technologies, Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
                "Jo\u017eef Stefan International Postgraduate School, Ljubljana, Slovenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u017eeroski", 
            "givenName": "Sa\u0161o", 
            "id": "sg:person.01232724445.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232724445.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0047-259x(75)90042-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002032133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008323212047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003341669", 
              "https://doi.org/10.1023/a:1008323212047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-014-0372-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003717621", 
              "https://doi.org/10.1007/s10618-014-0372-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23808-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006302763", 
              "https://doi.org/10.1007/978-3-642-23808-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23808-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006302763", 
              "https://doi.org/10.1007/978-3-642-23808-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-006-6226-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007730804", 
              "https://doi.org/10.1007/s10994-006-6226-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40991-2_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008704514", 
              "https://doi.org/10.1007/978-3-642-40991-2_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/e18080282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008910109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-016-5546-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009257969", 
              "https://doi.org/10.1007/s10994-016-5546-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2009.01.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009559686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9868.00054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010633282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75549-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015457853", 
              "https://doi.org/10.1007/978-3-540-75549-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-75549-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015457853", 
              "https://doi.org/10.1007/978-3-540-75549-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(98)00034-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017069030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007515423169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017116781", 
              "https://doi.org/10.1023/a:1007515423169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-44848-9_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018016036", 
              "https://doi.org/10.1007/978-3-662-44848-9_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24282-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019503104", 
              "https://doi.org/10.1007/978-3-319-24282-8_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-17876-9_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023576054", 
              "https://doi.org/10.1007/978-3-319-17876-9_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2013.01.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/widm.1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031460617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033560234", 
              "https://doi.org/10.1007/978-3-540-48247-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033560234", 
              "https://doi.org/10.1007/978-3-540-48247-5_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2009.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035666720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-008-5077-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035674531", 
              "https://doi.org/10.1007/s10994-008-5077-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1475-2743.2009.00196.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037597830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pneurobio.2011.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039358952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoinf.2010.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039408859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-016-0405-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039524254", 
              "https://doi.org/10.1007/s10844-016-0405-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74958-5_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041940329", 
              "https://doi.org/10.1007/978-3-540-74958-5_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-012-0278-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043417787", 
              "https://doi.org/10.1007/s10618-012-0278-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-012-0278-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043417787", 
              "https://doi.org/10.1007/s10618-012-0278-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74958-5_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044352645", 
              "https://doi.org/10.1007/978-3-540-74958-5_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74958-5_46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044352645", 
              "https://doi.org/10.1007/978-3-540-74958-5_46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74958-5_61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044726622", 
              "https://doi.org/10.1007/978-3-540-74958-5_61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74958-5_61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044726622", 
              "https://doi.org/10.1007/978-3-540-74958-5_61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046169932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40708-016-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046645650", 
              "https://doi.org/10.1007/s40708-016-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40708-016-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046645650", 
              "https://doi.org/10.1007/s40708-016-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecolmodel.2005.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046991449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2012.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047718939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11733492_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048143630", 
              "https://doi.org/10.1007/11733492_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11733492_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048143630", 
              "https://doi.org/10.1007/11733492_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conengprac.2012.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048236285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1982185.1982402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048347028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-44845-8_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050965483", 
              "https://doi.org/10.1007/978-3-662-44845-8_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b913690h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052468892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b913690h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052468892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10618-007-0067-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053365267", 
              "https://doi.org/10.1007/s10618-007-0067-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1961.10482090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058299626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03610928008827904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058332314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219622006002258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063000864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177731944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064402489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0169116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067096120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1561/2200000036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068001411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cimsa.2012.6269600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093239983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sitis.2012.121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094138233"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "We address the task of multi-target regression, where we generate global models that simultaneously predict multiple continuous variables. We use ensembles of generalized decision trees, called predictive clustering trees (PCTs), in particular bagging and random forests (RF) of PCTs and extremely randomized PCTs (extra PCTs). We add another dimension of randomization to these ensemble methods by learning individual base models that consider random subsets of target variables, while leaving the input space randomizations (in RF PCTs and extra PCTs) intact. Moreover, we propose a new ensemble prediction aggregation function, where the final ensemble prediction for a given target is influenced only by those base models that considered it during learning. An extensive experimental evaluation on a range of benchmark datasets has been conducted, where the extended ensemble methods were compared to the original ensemble methods, individual multi-target regression trees, and ensembles of single-target regression trees in terms of predictive performance, running times and model sizes. The results show that the proposed ensemble extension can yield better predictive performance, reduce learning time or both, without a considerable change in model size. The newly proposed aggregation function gives best results when used with extremely randomized PCTs. We also include a comparison with three competing methods, namely random linear target combinations and two variants of random projections.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10994-018-5744-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1125588", 
            "issn": [
              "0885-6125", 
              "1573-0565"
            ], 
            "name": "Machine Learning", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "107"
          }
        ], 
        "name": "Ensembles for multi-target regression with random output selections", 
        "pagination": "1673-1709", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7beacce96c670bae6090f76e4d92788d158a0ea8f6b6d9b095611c55957370d1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10994-018-5744-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105481920"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10994-018-5744-y", 
          "https://app.dimensions.ai/details/publication/pub.1105481920"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10994-018-5744-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5744-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5744-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5744-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5744-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10994-018-5744-y schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N98d164f336224726971f2881414afc2d
    4 schema:citation sg:pub.10.1007/11733492_13
    5 sg:pub.10.1007/978-3-319-17876-9_1
    6 sg:pub.10.1007/978-3-319-24282-8_9
    7 sg:pub.10.1007/978-3-540-48247-5_4
    8 sg:pub.10.1007/978-3-540-74958-5_38
    9 sg:pub.10.1007/978-3-540-74958-5_46
    10 sg:pub.10.1007/978-3-540-74958-5_61
    11 sg:pub.10.1007/978-3-540-75549-4_16
    12 sg:pub.10.1007/978-3-642-23808-6_22
    13 sg:pub.10.1007/978-3-642-40991-2_21
    14 sg:pub.10.1007/978-3-662-44845-8_15
    15 sg:pub.10.1007/978-3-662-44848-9_39
    16 sg:pub.10.1007/bf00058655
    17 sg:pub.10.1007/s10618-007-0067-9
    18 sg:pub.10.1007/s10618-012-0278-6
    19 sg:pub.10.1007/s10618-014-0372-z
    20 sg:pub.10.1007/s10844-016-0405-8
    21 sg:pub.10.1007/s10994-006-6226-1
    22 sg:pub.10.1007/s10994-008-5077-3
    23 sg:pub.10.1007/s10994-016-5546-z
    24 sg:pub.10.1007/s40708-016-0035-5
    25 sg:pub.10.1023/a:1007515423169
    26 sg:pub.10.1023/a:1008323212047
    27 sg:pub.10.1023/a:1010933404324
    28 https://doi.org/10.1002/widm.1157
    29 https://doi.org/10.1016/0047-259x(75)90042-1
    30 https://doi.org/10.1016/j.conengprac.2012.08.006
    31 https://doi.org/10.1016/j.ecoinf.2010.03.004
    32 https://doi.org/10.1016/j.ecolmodel.2005.08.017
    33 https://doi.org/10.1016/j.ecolmodel.2009.01.037
    34 https://doi.org/10.1016/j.ecolmodel.2009.09.002
    35 https://doi.org/10.1016/j.ins.2015.08.006
    36 https://doi.org/10.1016/j.patcog.2012.09.023
    37 https://doi.org/10.1016/j.patrec.2013.01.015
    38 https://doi.org/10.1016/j.pneurobio.2011.09.005
    39 https://doi.org/10.1016/s0004-3702(98)00034-4
    40 https://doi.org/10.1039/b913690h
    41 https://doi.org/10.1080/01621459.1961.10482090
    42 https://doi.org/10.1080/03610928008827904
    43 https://doi.org/10.1109/cimsa.2012.6269600
    44 https://doi.org/10.1109/sitis.2012.121
    45 https://doi.org/10.1111/1467-9868.00054
    46 https://doi.org/10.1111/j.1475-2743.2009.00196.x
    47 https://doi.org/10.1142/s0219622006002258
    48 https://doi.org/10.1145/1982185.1982402
    49 https://doi.org/10.1214/aoms/1177731944
    50 https://doi.org/10.1371/journal.pone.0169116
    51 https://doi.org/10.1561/2200000036
    52 https://doi.org/10.3390/e18080282
    53 schema:datePublished 2018-11
    54 schema:datePublishedReg 2018-11-01
    55 schema:description We address the task of multi-target regression, where we generate global models that simultaneously predict multiple continuous variables. We use ensembles of generalized decision trees, called predictive clustering trees (PCTs), in particular bagging and random forests (RF) of PCTs and extremely randomized PCTs (extra PCTs). We add another dimension of randomization to these ensemble methods by learning individual base models that consider random subsets of target variables, while leaving the input space randomizations (in RF PCTs and extra PCTs) intact. Moreover, we propose a new ensemble prediction aggregation function, where the final ensemble prediction for a given target is influenced only by those base models that considered it during learning. An extensive experimental evaluation on a range of benchmark datasets has been conducted, where the extended ensemble methods were compared to the original ensemble methods, individual multi-target regression trees, and ensembles of single-target regression trees in terms of predictive performance, running times and model sizes. The results show that the proposed ensemble extension can yield better predictive performance, reduce learning time or both, without a considerable change in model size. The newly proposed aggregation function gives best results when used with extremely randomized PCTs. We also include a comparison with three competing methods, namely random linear target combinations and two variants of random projections.
    56 schema:genre research_article
    57 schema:inLanguage en
    58 schema:isAccessibleForFree false
    59 schema:isPartOf N0804c82d0db04bc8983a5494d8865573
    60 N7f42dfcdb39c45a7902445e28058d23a
    61 sg:journal.1125588
    62 schema:name Ensembles for multi-target regression with random output selections
    63 schema:pagination 1673-1709
    64 schema:productId N625de46c4c67473ab490529faa18b4f5
    65 N7db2cd7511ee4c32a3c23971bfe05b9a
    66 N9ac7c8606b5e485c96d71cbe4e28082c
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105481920
    68 https://doi.org/10.1007/s10994-018-5744-y
    69 schema:sdDatePublished 2019-04-10T17:31
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Nad7b151d11094fcf958584042c678d90
    72 schema:url http://link.springer.com/10.1007%2Fs10994-018-5744-y
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0804c82d0db04bc8983a5494d8865573 schema:volumeNumber 107
    77 rdf:type schema:PublicationVolume
    78 N625de46c4c67473ab490529faa18b4f5 schema:name doi
    79 schema:value 10.1007/s10994-018-5744-y
    80 rdf:type schema:PropertyValue
    81 N6c323d0b80dd482f8892acc93a129ad1 rdf:first sg:person.011142164517.97
    82 rdf:rest N752f1ee2c5394bdeba14b51b300cb75c
    83 N752f1ee2c5394bdeba14b51b300cb75c rdf:first sg:person.01232724445.32
    84 rdf:rest rdf:nil
    85 N7db2cd7511ee4c32a3c23971bfe05b9a schema:name dimensions_id
    86 schema:value pub.1105481920
    87 rdf:type schema:PropertyValue
    88 N7f42dfcdb39c45a7902445e28058d23a schema:issueNumber 11
    89 rdf:type schema:PublicationIssue
    90 N98d164f336224726971f2881414afc2d rdf:first sg:person.07454260515.75
    91 rdf:rest N6c323d0b80dd482f8892acc93a129ad1
    92 N9ac7c8606b5e485c96d71cbe4e28082c schema:name readcube_id
    93 schema:value 7beacce96c670bae6090f76e4d92788d158a0ea8f6b6d9b095611c55957370d1
    94 rdf:type schema:PropertyValue
    95 Nad7b151d11094fcf958584042c678d90 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Mathematical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Statistics
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1125588 schema:issn 0885-6125
    104 1573-0565
    105 schema:name Machine Learning
    106 rdf:type schema:Periodical
    107 sg:person.011142164517.97 schema:affiliation https://www.grid.ac/institutes/grid.445211.7
    108 schema:familyName Kocev
    109 schema:givenName Dragi
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142164517.97
    111 rdf:type schema:Person
    112 sg:person.01232724445.32 schema:affiliation https://www.grid.ac/institutes/grid.445211.7
    113 schema:familyName Džeroski
    114 schema:givenName Sašo
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232724445.32
    116 rdf:type schema:Person
    117 sg:person.07454260515.75 schema:affiliation https://www.grid.ac/institutes/grid.445211.7
    118 schema:familyName Breskvar
    119 schema:givenName Martin
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454260515.75
    121 rdf:type schema:Person
    122 sg:pub.10.1007/11733492_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048143630
    123 https://doi.org/10.1007/11733492_13
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-319-17876-9_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023576054
    126 https://doi.org/10.1007/978-3-319-17876-9_1
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-319-24282-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019503104
    129 https://doi.org/10.1007/978-3-319-24282-8_9
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-540-48247-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033560234
    132 https://doi.org/10.1007/978-3-540-48247-5_4
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-540-74958-5_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041940329
    135 https://doi.org/10.1007/978-3-540-74958-5_38
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-540-74958-5_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044352645
    138 https://doi.org/10.1007/978-3-540-74958-5_46
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-540-74958-5_61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726622
    141 https://doi.org/10.1007/978-3-540-74958-5_61
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-540-75549-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015457853
    144 https://doi.org/10.1007/978-3-540-75549-4_16
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-642-23808-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006302763
    147 https://doi.org/10.1007/978-3-642-23808-6_22
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-642-40991-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008704514
    150 https://doi.org/10.1007/978-3-642-40991-2_21
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-662-44845-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965483
    153 https://doi.org/10.1007/978-3-662-44845-8_15
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-662-44848-9_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016036
    156 https://doi.org/10.1007/978-3-662-44848-9_39
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    159 https://doi.org/10.1007/bf00058655
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10618-007-0067-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365267
    162 https://doi.org/10.1007/s10618-007-0067-9
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10618-012-0278-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043417787
    165 https://doi.org/10.1007/s10618-012-0278-6
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10618-014-0372-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003717621
    168 https://doi.org/10.1007/s10618-014-0372-z
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10844-016-0405-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039524254
    171 https://doi.org/10.1007/s10844-016-0405-8
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10994-006-6226-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730804
    174 https://doi.org/10.1007/s10994-006-6226-1
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10994-008-5077-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035674531
    177 https://doi.org/10.1007/s10994-008-5077-3
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10994-016-5546-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009257969
    180 https://doi.org/10.1007/s10994-016-5546-z
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s40708-016-0035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046645650
    183 https://doi.org/10.1007/s40708-016-0035-5
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1023/a:1007515423169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017116781
    186 https://doi.org/10.1023/a:1007515423169
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1023/a:1008323212047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003341669
    189 https://doi.org/10.1023/a:1008323212047
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    192 https://doi.org/10.1023/a:1010933404324
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1002/widm.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460617
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/0047-259x(75)90042-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032133
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.conengprac.2012.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048236285
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/j.ecoinf.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039408859
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.ecolmodel.2005.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046991449
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.ecolmodel.2009.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559686
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.ecolmodel.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035666720
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.ins.2015.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046169932
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.patcog.2012.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047718939
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.patrec.2013.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423972
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.pneurobio.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039358952
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/s0004-3702(98)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017069030
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1039/b913690h schema:sameAs https://app.dimensions.ai/details/publication/pub.1052468892
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1080/01621459.1961.10482090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299626
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1080/03610928008827904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058332314
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1109/cimsa.2012.6269600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093239983
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1109/sitis.2012.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094138233
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1111/1467-9868.00054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010633282
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1111/j.1475-2743.2009.00196.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037597830
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1142/s0219622006002258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063000864
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1145/1982185.1982402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048347028
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1214/aoms/1177731944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402489
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1371/journal.pone.0169116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067096120
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1561/2200000036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001411
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.3390/e18080282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008910109
    243 rdf:type schema:CreativeWork
    244 https://www.grid.ac/institutes/grid.445211.7 schema:alternateName Jožef Stefan International Postgraduate School
    245 schema:name Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
    246 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...