Targeted and contextual redescription set exploration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Matej Mihelčić, Tomislav Šmuc

ABSTRACT

One important problem occurring in redescription mining is a very large number of produced redescriptions. This makes analyses time consuming and generally difficult. We present the targeted and contextual redescription set exploration, realized through the tool InterSet. The main purpose of the tool is to derive additional knowledge from the redescription set which allows exploring parts of redescription set of interest and examining redescriptions individually or in the broader context, with the aim of increasing overall understandability. InterSet allows relating, grouping redescriptions, observing distributions of various redescription properties and selecting the appropriate subsets for further, detailed study. This allows gaining knowledge about the underlying data, help in forming, understanding, supporting research hypothesis or assists in understanding one or more redescriptions of interest. The tool provides three different, fully connected interaction modes based on: (1) similarity of entity occurrence in redescription support sets, (2) attribute co-occurrence in redescriptions and (3) redescription quality measures. Additionally, it allows exploration of relations between different redescriptions by creating a graph visualization that includes the top k-shortest paths containing selected redescriptions. On the individual redescription level, it allows studying value distributions of described entities, for a given set of attributes. More... »

PAGES

1809-1846

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-018-5738-9

DOI

http://dx.doi.org/10.1007/s10994-018-5738-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105324763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jo\u017eef Stefan International Postgraduate School", 
          "id": "https://www.grid.ac/institutes/grid.445211.7", 
          "name": [
            "Ru\u0111er Bo\u0161kovi\u0107 Institute, Bijeni\u010dka Cesta 54, 10000, Zagreb, Croatia", 
            "Jo\u017eef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mihel\u010di\u0107", 
        "givenName": "Matej", 
        "id": "sg:person.011674213555.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011674213555.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rudjer Boskovic Institute", 
          "id": "https://www.grid.ac/institutes/grid.4905.8", 
          "name": [
            "Ru\u0111er Bo\u0161kovi\u0107 Institute, Bijeni\u010dka Cesta 54, 10000, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u0160muc", 
        "givenName": "Tomislav", 
        "id": "sg:person.01325507645.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325507645.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002362599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.183.1.101-108.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005412117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0950-7051(96)01033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006013330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01097-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006969180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007790653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11504894_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008044262", 
          "https://doi.org/10.1007/11504894_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11504894_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008044262", 
          "https://doi.org/10.1007/11504894_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010253203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010477361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016477643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1978942.1978967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017353286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-11812-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019871899", 
          "https://doi.org/10.1007/978-3-319-11812-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1081870.1081912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.47.9.1334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023235820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sam.11192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023275582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-014-0304-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024177090", 
          "https://doi.org/10.1007/s10844-014-0304-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2339530.2339769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027655652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1816112.1816117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030186898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-39315-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030381764", 
          "https://doi.org/10.1007/978-3-319-39315-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/952532.952714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033249683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.190201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033348191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.1998.00186.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034687681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035986320", 
          "https://doi.org/10.1007/bf00140478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00140478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035986320", 
          "https://doi.org/10.1007/bf00140478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/136588199241247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037433152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039646901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-7-106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040978834", 
          "https://doi.org/10.1186/1471-2148-7-106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01386390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041716633", 
          "https://doi.org/10.1007/bf01386390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2501511.2501517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33486-3_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042926526", 
          "https://doi.org/10.1007/978-3-642-33486-3_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045479869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2020408.2020529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046685986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01793-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047381088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-006-0006-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048744303", 
          "https://doi.org/10.1007/s10844-006-0006-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sam.11145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049062495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2015.01380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049962703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/mic.0.070763-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060395629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2008.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2011.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061662388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2015.2467551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2015.2467613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061814563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5438.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.17.11.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064716730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v021.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082687839", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-017-0448-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083740821", 
          "https://doi.org/10.1007/s10844-017-0448-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10844-017-0448-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083740821", 
          "https://doi.org/10.1007/s10844-017-0448-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-46307-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084851591", 
          "https://doi.org/10.1007/978-3-319-46307-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-57529-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085122069", 
          "https://doi.org/10.1007/978-3-319-57529-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972788.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0187364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092467085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2003.1250960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094201563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2016.0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095572800"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "One important problem occurring in redescription mining is a very large number of produced redescriptions. This makes analyses time consuming and generally difficult. We present the targeted and contextual redescription set exploration, realized through the tool InterSet. The main purpose of the tool is to derive additional knowledge from the redescription set which allows exploring parts of redescription set of interest and examining redescriptions individually or in the broader context, with the aim of increasing overall understandability. InterSet allows relating, grouping redescriptions, observing distributions of various redescription properties and selecting the appropriate subsets for further, detailed study. This allows gaining knowledge about the underlying data, help in forming, understanding, supporting research hypothesis or assists in understanding one or more redescriptions of interest. The tool provides three different, fully connected interaction modes based on: (1) similarity of entity occurrence in redescription support sets, (2) attribute co-occurrence in redescriptions and (3) redescription quality measures. Additionally, it allows exploration of relations between different redescriptions by creating a graph visualization that includes the top k-shortest paths containing selected redescriptions. On the individual redescription level, it allows studying value distributions of described entities, for a given set of attributes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-018-5738-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3799656", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "name": "Targeted and contextual redescription set exploration", 
    "pagination": "1809-1846", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acc527cd3a4357c60bbf5c9210b843a94040990073b27854213aea48275e92b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-018-5738-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105324763"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-018-5738-9", 
      "https://app.dimensions.ai/details/publication/pub.1105324763"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10994-018-5738-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5738-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5738-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5738-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-018-5738-9'


 

This table displays all metadata directly associated to this object as RDF triples.

245 TRIPLES      21 PREDICATES      80 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-018-5738-9 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nec43b1a189ea43558e83cc05dd86bf73
4 schema:citation sg:pub.10.1007/11504894_63
5 sg:pub.10.1007/978-3-319-11812-3_8
6 sg:pub.10.1007/978-3-319-39315-5_9
7 sg:pub.10.1007/978-3-319-46307-0_3
8 sg:pub.10.1007/978-3-319-57529-2_23
9 sg:pub.10.1007/978-3-642-33486-3_54
10 sg:pub.10.1007/978-3-642-56927-2
11 sg:pub.10.1007/bf00140478
12 sg:pub.10.1007/bf01386390
13 sg:pub.10.1007/s10844-006-0006-z
14 sg:pub.10.1007/s10844-014-0304-9
15 sg:pub.10.1007/s10844-017-0448-5
16 sg:pub.10.1186/1471-2148-7-106
17 https://app.dimensions.ai/details/publication/pub.1082687839
18 https://doi.org/10.1002/sam.11145
19 https://doi.org/10.1002/sam.11192
20 https://doi.org/10.1016/0950-7051(96)01033-7
21 https://doi.org/10.1016/j.eswa.2016.10.012
22 https://doi.org/10.1046/j.1365-313x.1998.00186.x
23 https://doi.org/10.1073/pnas.47.9.1334
24 https://doi.org/10.1080/136588199241247
25 https://doi.org/10.1093/nar/28.1.33
26 https://doi.org/10.1093/nar/gkr1060
27 https://doi.org/10.1093/nar/gkw964
28 https://doi.org/10.1099/mic.0.070763-0
29 https://doi.org/10.1101/gr.190201
30 https://doi.org/10.1109/icdm.2003.1250960
31 https://doi.org/10.1109/icdm.2016.0032
32 https://doi.org/10.1109/tkde.2008.32
33 https://doi.org/10.1109/tkde.2011.204
34 https://doi.org/10.1109/tvcg.2015.2467551
35 https://doi.org/10.1109/tvcg.2015.2467613
36 https://doi.org/10.1126/science.278.5338.631
37 https://doi.org/10.1126/science.286.5438.306
38 https://doi.org/10.1128/aem.01097-15
39 https://doi.org/10.1128/jb.01793-07
40 https://doi.org/10.1128/jb.183.1.101-108.2001
41 https://doi.org/10.1137/1.9781611972788.30
42 https://doi.org/10.1145/1014052.1014083
43 https://doi.org/10.1145/1081870.1081912
44 https://doi.org/10.1145/1656274.1656280
45 https://doi.org/10.1145/1816112.1816117
46 https://doi.org/10.1145/1978942.1978967
47 https://doi.org/10.1145/2020408.2020529
48 https://doi.org/10.1145/2339530.2339769
49 https://doi.org/10.1145/2339530.2339774
50 https://doi.org/10.1145/2339530.2339776
51 https://doi.org/10.1145/2501511.2501517
52 https://doi.org/10.1145/952532.952714
53 https://doi.org/10.1287/mnsc.17.11.712
54 https://doi.org/10.1371/journal.pone.0187364
55 https://doi.org/10.18637/jss.v021.i05
56 https://doi.org/10.3389/fmicb.2015.01380
57 schema:datePublished 2018-11
58 schema:datePublishedReg 2018-11-01
59 schema:description One important problem occurring in redescription mining is a very large number of produced redescriptions. This makes analyses time consuming and generally difficult. We present the targeted and contextual redescription set exploration, realized through the tool InterSet. The main purpose of the tool is to derive additional knowledge from the redescription set which allows exploring parts of redescription set of interest and examining redescriptions individually or in the broader context, with the aim of increasing overall understandability. InterSet allows relating, grouping redescriptions, observing distributions of various redescription properties and selecting the appropriate subsets for further, detailed study. This allows gaining knowledge about the underlying data, help in forming, understanding, supporting research hypothesis or assists in understanding one or more redescriptions of interest. The tool provides three different, fully connected interaction modes based on: (1) similarity of entity occurrence in redescription support sets, (2) attribute co-occurrence in redescriptions and (3) redescription quality measures. Additionally, it allows exploration of relations between different redescriptions by creating a graph visualization that includes the top k-shortest paths containing selected redescriptions. On the individual redescription level, it allows studying value distributions of described entities, for a given set of attributes.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf N15f926419b1644b0ab5f999da7e4f2b3
64 Ne0a678102e2749009f5554f16bc8286d
65 sg:journal.1125588
66 schema:name Targeted and contextual redescription set exploration
67 schema:pagination 1809-1846
68 schema:productId N22c4ce47efbf4c659d6a0830fff7cad7
69 N24a64bc3a42643cfb4c6070a1d906688
70 N8e42e7ebd07648878eb2d96f32414427
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105324763
72 https://doi.org/10.1007/s10994-018-5738-9
73 schema:sdDatePublished 2019-04-10T16:41
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N9d836aa34b124189acc6866e10ffbeb6
76 schema:url http://link.springer.com/10.1007%2Fs10994-018-5738-9
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N15f926419b1644b0ab5f999da7e4f2b3 schema:volumeNumber 107
81 rdf:type schema:PublicationVolume
82 N22c4ce47efbf4c659d6a0830fff7cad7 schema:name dimensions_id
83 schema:value pub.1105324763
84 rdf:type schema:PropertyValue
85 N24a64bc3a42643cfb4c6070a1d906688 schema:name readcube_id
86 schema:value acc527cd3a4357c60bbf5c9210b843a94040990073b27854213aea48275e92b4
87 rdf:type schema:PropertyValue
88 N8e42e7ebd07648878eb2d96f32414427 schema:name doi
89 schema:value 10.1007/s10994-018-5738-9
90 rdf:type schema:PropertyValue
91 N9d836aa34b124189acc6866e10ffbeb6 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Na84f68dc3a4f4a51aa864299bb9c4b05 rdf:first sg:person.01325507645.55
94 rdf:rest rdf:nil
95 Ne0a678102e2749009f5554f16bc8286d schema:issueNumber 11
96 rdf:type schema:PublicationIssue
97 Nec43b1a189ea43558e83cc05dd86bf73 rdf:first sg:person.011674213555.34
98 rdf:rest Na84f68dc3a4f4a51aa864299bb9c4b05
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information Systems
104 rdf:type schema:DefinedTerm
105 sg:grant.3799656 http://pending.schema.org/fundedItem sg:pub.10.1007/s10994-018-5738-9
106 rdf:type schema:MonetaryGrant
107 sg:journal.1125588 schema:issn 0885-6125
108 1573-0565
109 schema:name Machine Learning
110 rdf:type schema:Periodical
111 sg:person.011674213555.34 schema:affiliation https://www.grid.ac/institutes/grid.445211.7
112 schema:familyName Mihelčić
113 schema:givenName Matej
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011674213555.34
115 rdf:type schema:Person
116 sg:person.01325507645.55 schema:affiliation https://www.grid.ac/institutes/grid.4905.8
117 schema:familyName Šmuc
118 schema:givenName Tomislav
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325507645.55
120 rdf:type schema:Person
121 sg:pub.10.1007/11504894_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008044262
122 https://doi.org/10.1007/11504894_63
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-319-11812-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019871899
125 https://doi.org/10.1007/978-3-319-11812-3_8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-319-39315-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030381764
128 https://doi.org/10.1007/978-3-319-39315-5_9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-319-46307-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084851591
131 https://doi.org/10.1007/978-3-319-46307-0_3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-319-57529-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085122069
134 https://doi.org/10.1007/978-3-319-57529-2_23
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-33486-3_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042926526
137 https://doi.org/10.1007/978-3-642-33486-3_54
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
140 https://doi.org/10.1007/978-3-642-56927-2
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf00140478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035986320
143 https://doi.org/10.1007/bf00140478
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf01386390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041716633
146 https://doi.org/10.1007/bf01386390
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10844-006-0006-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048744303
149 https://doi.org/10.1007/s10844-006-0006-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10844-014-0304-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024177090
152 https://doi.org/10.1007/s10844-014-0304-9
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10844-017-0448-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083740821
155 https://doi.org/10.1007/s10844-017-0448-5
156 rdf:type schema:CreativeWork
157 sg:pub.10.1186/1471-2148-7-106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040978834
158 https://doi.org/10.1186/1471-2148-7-106
159 rdf:type schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1082687839 schema:CreativeWork
161 https://doi.org/10.1002/sam.11145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049062495
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/sam.11192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023275582
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0950-7051(96)01033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006013330
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.eswa.2016.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002362599
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1046/j.1365-313x.1998.00186.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034687681
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.47.9.1334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023235820
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/136588199241247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037433152
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/nar/28.1.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007790653
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/gkr1060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479869
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/nar/gkw964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701757
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1099/mic.0.070763-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060395629
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1101/gr.190201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033348191
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/icdm.2003.1250960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094201563
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/icdm.2016.0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095572800
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tkde.2008.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661922
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tkde.2011.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061662388
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tvcg.2015.2467551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814554
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tvcg.2015.2467613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814563
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.278.5338.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039646901
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.286.5438.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566888
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1128/aem.01097-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006969180
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1128/jb.01793-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047381088
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1128/jb.183.1.101-108.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005412117
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1137/1.9781611972788.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800264
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1145/1014052.1014083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010477361
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1145/1081870.1081912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786326
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1145/1656274.1656280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425649
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1145/1816112.1816117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030186898
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1145/1978942.1978967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017353286
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1145/2020408.2020529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046685986
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1145/2339530.2339769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027655652
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1145/2339530.2339774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016477643
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/2339530.2339776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010253203
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/2501511.2501517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438789
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/952532.952714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033249683
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1287/mnsc.17.11.712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064716730
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1371/journal.pone.0187364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092467085
234 rdf:type schema:CreativeWork
235 https://doi.org/10.18637/jss.v021.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672315
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3389/fmicb.2015.01380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049962703
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.445211.7 schema:alternateName Jožef Stefan International Postgraduate School
240 schema:name Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia
241 Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.4905.8 schema:alternateName Rudjer Boskovic Institute
244 schema:name Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
245 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...