kProbLog: an algebraic Prolog for machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Francesco Orsini, Paolo Frasconi, Luc De Raedt

ABSTRACT

We introduce kProbLog as a declarative logical language for machine learning. kProbLog is a simple algebraic extension of Prolog with facts and rules annotated by semi-ring labels. It allows to elegantly combine algebraic expressions with logic programs. We introduce the semantics of kProbLog, its inference algorithm, its implementation and provide convergence guarantees. We provide several code examples to illustrate its potential for a wide range of machine learning techniques. In particular, we show the encodings of state-of-the-art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels and an instance of graph invariant kernels, a recent framework for graph kernels with continuous attributes. However, kProbLog is not limited to kernel methods and it can concisely express declarative formulations of tensor-based algorithms such as matrix factorization and energy-based models, and it can exploit semirings of dual numbers to perform algorithmic differentiation. Furthermore, experiments show that kProbLog is not only of theoretical interest, but can also be applied to real-world datasets. At the technical level, kProbLog extends aProbLog (an algebraic Prolog) by allowing multiple semirings to coexist in a single program and by introducing meta-functions for manipulating algebraic values. More... »

PAGES

1933-1969

References to SciGraph publications

  • 2008. Logical and Relational Learning in NONE
  • 2011. Graph Kernels in SPRINGERREFERENCE
  • 2001. How to Upgrade Propositional Learners to First Order Logic: A Case Study in MACHINE LEARNING AND ITS APPLICATIONS
  • 1990-08. Learning logical definitions from relations in MACHINE LEARNING
  • 2004-12. Kernels and Distances for Structured Data in MACHINE LEARNING
  • 2012-01. ILP turns 20 in MACHINE LEARNING
  • 2003. On Graph Kernels: Hardness Results and Efficient Alternatives in LEARNING THEORY AND KERNEL MACHINES
  • 2011. Dyna: Extending Datalog for Modern AI in DATALOG RELOADED
  • 2006-02. Markov logic networks in MACHINE LEARNING
  • 2009. Semirings and Formal Power Series in HANDBOOK OF WEIGHTED AUTOMATA
  • 2005. Using Datalog with Binary Decision Diagrams for Program Analysis in PROGRAMMING LANGUAGES AND SYSTEMS
  • 2012. Efficient Graph Kernels by Randomization in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2014. FPsolve: A Generic Solver for Fixpoint Equations over Semirings in IMPLEMENTATION AND APPLICATION OF AUTOMATA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10994-017-5668-y

    DOI

    http://dx.doi.org/10.1007/s10994-017-5668-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092330964


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Florence", 
              "id": "https://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium", 
                "Department of Information Engineering, Universit\u00e0 degli Studi di Firenze, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orsini", 
            "givenName": "Francesco", 
            "id": "sg:person.013336525135.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336525135.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Florence", 
              "id": "https://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Department of Information Engineering, Universit\u00e0 degli Studi di Firenze, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frasconi", 
            "givenName": "Paolo", 
            "id": "sg:person.0771273672.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771273672.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Raedt", 
            "givenName": "Luc", 
            "id": "sg:person.015333627665.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1021/jm040835a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002800859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jm040835a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002800859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2063576.2063827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004480820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01492-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009175056", 
              "https://doi.org/10.1007/978-3-642-01492-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24206-9_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011094548", 
              "https://doi.org/10.1007/978-3-642-24206-9_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68856-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014103340", 
              "https://doi.org/10.1007/978-3-540-68856-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68856-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014103340", 
              "https://doi.org/10.1007/978-3-540-68856-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artint.2014.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017657546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/136035.136043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018110957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-011-5259-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018283982", 
              "https://doi.org/10.1007/s10994-011-5259-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-011-5259-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018283982", 
              "https://doi.org/10.1007/s10994-011-5259-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11575467_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021674762", 
              "https://doi.org/10.1007/11575467_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11575467_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021674762", 
              "https://doi.org/10.1007/11575467_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:mach.0000039777.23772.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024224088", 
              "https://doi.org/10.1023/b:mach.0000039777.23772.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-08846-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025093479", 
              "https://doi.org/10.1007/978-3-319-08846-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1015330.1015446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025681538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1265530.1265535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028685684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00117105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030271461", 
              "https://doi.org/10.1007/bf00117105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jal.2016.11.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031375075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33460-3_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032837686", 
              "https://doi.org/10.1007/978-3-642-33460-3_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44673-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035536732", 
              "https://doi.org/10.1007/3-540-44673-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45167-9_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038248734", 
              "https://doi.org/10.1007/978-3-540-45167-9_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45167-9_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038248734", 
              "https://doi.org/10.1007/978-3-540-45167-9_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1072228.1072378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039592320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/321978.321991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042730246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-006-5833-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045259579", 
              "https://doi.org/10.1007/s10994-006-5833-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-006-5833-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045259579", 
              "https://doi.org/10.1007/s10994-006-5833-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/860435.860443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050195766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jm00106a046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055935291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/69.43410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061213420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mc.2009.263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061388205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2200/s00692ed1v01y201601aim032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069288572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/springerreference_179061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089596356", 
              "https://doi.org/10.1007/springerreference_179061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9780898717761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1219044.1219076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099221828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1219044.1219076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099221828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1073083.1073085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099239590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1073083.1073085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099239590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579556"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "We introduce kProbLog as a declarative logical language for machine learning. kProbLog is a simple algebraic extension of Prolog with facts and rules annotated by semi-ring labels. It allows to elegantly combine algebraic expressions with logic programs. We introduce the semantics of kProbLog, its inference algorithm, its implementation and provide convergence guarantees. We provide several code examples to illustrate its potential for a wide range of machine learning techniques. In particular, we show the encodings of state-of-the-art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels and an instance of graph invariant kernels, a recent framework for graph kernels with continuous attributes. However, kProbLog is not limited to kernel methods and it can concisely express declarative formulations of tensor-based algorithms such as matrix factorization and energy-based models, and it can exploit semirings of dual numbers to perform algorithmic differentiation. Furthermore, experiments show that kProbLog is not only of theoretical interest, but can also be applied to real-world datasets. At the technical level, kProbLog extends aProbLog (an algebraic Prolog) by allowing multiple semirings to coexist in a single program and by introducing meta-functions for manipulating algebraic values.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10994-017-5668-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1125588", 
            "issn": [
              "0885-6125", 
              "1573-0565"
            ], 
            "name": "Machine Learning", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "106"
          }
        ], 
        "name": "kProbLog: an algebraic Prolog for machine learning", 
        "pagination": "1933-1969", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4aed4cb8169553c43560ac254393e05f845369b485d5f5d07a0f5b81a2cba231"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10994-017-5668-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092330964"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10994-017-5668-y", 
          "https://app.dimensions.ai/details/publication/pub.1092330964"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10994-017-5668-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5668-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5668-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5668-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5668-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10994-017-5668-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nab87ecea80e54add93b73fcfe5ada0ce
    4 schema:citation sg:pub.10.1007/11575467_8
    5 sg:pub.10.1007/3-540-44673-7_5
    6 sg:pub.10.1007/978-3-319-08846-4_1
    7 sg:pub.10.1007/978-3-540-45167-9_11
    8 sg:pub.10.1007/978-3-540-68856-3
    9 sg:pub.10.1007/978-3-642-01492-5_1
    10 sg:pub.10.1007/978-3-642-24206-9_11
    11 sg:pub.10.1007/978-3-642-33460-3_30
    12 sg:pub.10.1007/bf00117105
    13 sg:pub.10.1007/s10994-006-5833-1
    14 sg:pub.10.1007/s10994-011-5259-2
    15 sg:pub.10.1007/springerreference_179061
    16 sg:pub.10.1023/b:mach.0000039777.23772.30
    17 https://doi.org/10.1016/j.artint.2014.08.003
    18 https://doi.org/10.1016/j.jal.2016.11.031
    19 https://doi.org/10.1021/jm00106a046
    20 https://doi.org/10.1021/jm040835a
    21 https://doi.org/10.1109/69.43410
    22 https://doi.org/10.1109/mc.2009.263
    23 https://doi.org/10.1137/1.9780898717761
    24 https://doi.org/10.1145/1015330.1015446
    25 https://doi.org/10.1145/1265530.1265535
    26 https://doi.org/10.1145/136035.136043
    27 https://doi.org/10.1145/2063576.2063827
    28 https://doi.org/10.1145/321978.321991
    29 https://doi.org/10.1145/860435.860443
    30 https://doi.org/10.1613/jair.989
    31 https://doi.org/10.2200/s00692ed1v01y201601aim032
    32 https://doi.org/10.3115/1072228.1072378
    33 https://doi.org/10.3115/1073083.1073085
    34 https://doi.org/10.3115/1219044.1219076
    35 schema:datePublished 2017-12
    36 schema:datePublishedReg 2017-12-01
    37 schema:description We introduce kProbLog as a declarative logical language for machine learning. kProbLog is a simple algebraic extension of Prolog with facts and rules annotated by semi-ring labels. It allows to elegantly combine algebraic expressions with logic programs. We introduce the semantics of kProbLog, its inference algorithm, its implementation and provide convergence guarantees. We provide several code examples to illustrate its potential for a wide range of machine learning techniques. In particular, we show the encodings of state-of-the-art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels and an instance of graph invariant kernels, a recent framework for graph kernels with continuous attributes. However, kProbLog is not limited to kernel methods and it can concisely express declarative formulations of tensor-based algorithms such as matrix factorization and energy-based models, and it can exploit semirings of dual numbers to perform algorithmic differentiation. Furthermore, experiments show that kProbLog is not only of theoretical interest, but can also be applied to real-world datasets. At the technical level, kProbLog extends aProbLog (an algebraic Prolog) by allowing multiple semirings to coexist in a single program and by introducing meta-functions for manipulating algebraic values.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N9381c4217a4348479545a508b2055b8c
    42 Nd455a725d69340a8a05b648b91ec7dc1
    43 sg:journal.1125588
    44 schema:name kProbLog: an algebraic Prolog for machine learning
    45 schema:pagination 1933-1969
    46 schema:productId N0ab3f5e6411c487f8ce9a750e3f58285
    47 N2adfff20818e46debe867e20970b28d6
    48 N90eb645646c94e319ce0498369bec923
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092330964
    50 https://doi.org/10.1007/s10994-017-5668-y
    51 schema:sdDatePublished 2019-04-10T20:10
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N3fbcbce61def49a493747ec8f4f904d4
    54 schema:url https://link.springer.com/10.1007%2Fs10994-017-5668-y
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N0ab3f5e6411c487f8ce9a750e3f58285 schema:name doi
    59 schema:value 10.1007/s10994-017-5668-y
    60 rdf:type schema:PropertyValue
    61 N2adfff20818e46debe867e20970b28d6 schema:name readcube_id
    62 schema:value 4aed4cb8169553c43560ac254393e05f845369b485d5f5d07a0f5b81a2cba231
    63 rdf:type schema:PropertyValue
    64 N2b75205ed2b6414398463fedfc60e3e2 rdf:first sg:person.015333627665.77
    65 rdf:rest rdf:nil
    66 N3fbcbce61def49a493747ec8f4f904d4 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N594b993128ee4c73bbc7f07d41f01ce9 rdf:first sg:person.0771273672.09
    69 rdf:rest N2b75205ed2b6414398463fedfc60e3e2
    70 N90eb645646c94e319ce0498369bec923 schema:name dimensions_id
    71 schema:value pub.1092330964
    72 rdf:type schema:PropertyValue
    73 N9381c4217a4348479545a508b2055b8c schema:issueNumber 12
    74 rdf:type schema:PublicationIssue
    75 Nab87ecea80e54add93b73fcfe5ada0ce rdf:first sg:person.013336525135.75
    76 rdf:rest N594b993128ee4c73bbc7f07d41f01ce9
    77 Nd455a725d69340a8a05b648b91ec7dc1 schema:volumeNumber 106
    78 rdf:type schema:PublicationVolume
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Artificial Intelligence and Image Processing
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1125588 schema:issn 0885-6125
    86 1573-0565
    87 schema:name Machine Learning
    88 rdf:type schema:Periodical
    89 sg:person.013336525135.75 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
    90 schema:familyName Orsini
    91 schema:givenName Francesco
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336525135.75
    93 rdf:type schema:Person
    94 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    95 schema:familyName De Raedt
    96 schema:givenName Luc
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
    98 rdf:type schema:Person
    99 sg:person.0771273672.09 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
    100 schema:familyName Frasconi
    101 schema:givenName Paolo
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771273672.09
    103 rdf:type schema:Person
    104 sg:pub.10.1007/11575467_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021674762
    105 https://doi.org/10.1007/11575467_8
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/3-540-44673-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035536732
    108 https://doi.org/10.1007/3-540-44673-7_5
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-319-08846-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025093479
    111 https://doi.org/10.1007/978-3-319-08846-4_1
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-540-45167-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038248734
    114 https://doi.org/10.1007/978-3-540-45167-9_11
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-540-68856-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014103340
    117 https://doi.org/10.1007/978-3-540-68856-3
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-642-01492-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009175056
    120 https://doi.org/10.1007/978-3-642-01492-5_1
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-642-24206-9_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011094548
    123 https://doi.org/10.1007/978-3-642-24206-9_11
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-642-33460-3_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032837686
    126 https://doi.org/10.1007/978-3-642-33460-3_30
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf00117105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030271461
    129 https://doi.org/10.1007/bf00117105
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10994-006-5833-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045259579
    132 https://doi.org/10.1007/s10994-006-5833-1
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10994-011-5259-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018283982
    135 https://doi.org/10.1007/s10994-011-5259-2
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/springerreference_179061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089596356
    138 https://doi.org/10.1007/springerreference_179061
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1023/b:mach.0000039777.23772.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024224088
    141 https://doi.org/10.1023/b:mach.0000039777.23772.30
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.artint.2014.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017657546
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.jal.2016.11.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031375075
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1021/jm00106a046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055935291
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/jm040835a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002800859
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/69.43410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061213420
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/mc.2009.263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061388205
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1137/1.9780898717761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556582
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1145/1015330.1015446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025681538
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1145/1265530.1265535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028685684
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1145/136035.136043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018110957
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1145/2063576.2063827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004480820
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1145/321978.321991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042730246
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1145/860435.860443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050195766
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1613/jair.989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579556
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.2200/s00692ed1v01y201601aim032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288572
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.3115/1072228.1072378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039592320
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.3115/1073083.1073085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099239590
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.3115/1219044.1219076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221828
    178 rdf:type schema:CreativeWork
    179 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
    180 schema:name Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
    181 rdf:type schema:Organization
    182 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
    183 schema:name Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
    184 Department of Information Engineering, Università degli Studi di Firenze, Florence, Italy
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...