Ontology type: schema:ScholarlyArticle Open Access: True
2017-10
AUTHORSSamuel Kolb, Sergey Paramonov, Tias Guns, Luc De Raedt
ABSTRACTSpreadsheets, comma separated value files and other tabular data representations are in wide use today. However, writing, maintaining and identifying good formulas for tabular data and spreadsheets can be time-consuming and error-prone. We investigate the automatic learning of constraints (formulas and relations) in raw tabular data in an unsupervised way. We represent common spreadsheet formulas and relations through predicates and expressions whose arguments must satisfy the inherent properties of the constraint. The challenge is to automatically infer the set of constraints present in the data, without labeled examples or user feedback. We propose a two-stage generate and test method where the first stage uses constraint solving techniques to efficiently reduce the number of candidates, based on the predicate signatures. Our approach takes inspiration from inductive logic programming, constraint learning and constraint satisfaction. We show that we are able to accurately discover constraints in spreadsheets from various sources. More... »
PAGES1441-1468
http://scigraph.springernature.com/pub.10.1007/s10994-017-5640-x
DOIhttp://dx.doi.org/10.1007/s10994-017-5640-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085869747
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "KU Leuven",
"id": "https://www.grid.ac/institutes/grid.5596.f",
"name": [
"KU Leuven, Leuven, Belgium"
],
"type": "Organization"
},
"familyName": "Kolb",
"givenName": "Samuel",
"id": "sg:person.016707313732.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707313732.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "KU Leuven",
"id": "https://www.grid.ac/institutes/grid.5596.f",
"name": [
"KU Leuven, Leuven, Belgium"
],
"type": "Organization"
},
"familyName": "Paramonov",
"givenName": "Sergey",
"id": "sg:person.07443771633.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07443771633.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vrije Universiteit Brussel",
"id": "https://www.grid.ac/institutes/grid.8767.e",
"name": [
"Vrije Universiteit Brussel, Brussels, Belgium"
],
"type": "Organization"
},
"familyName": "Guns",
"givenName": "Tias",
"id": "sg:person.015074144413.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015074144413.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "KU Leuven",
"id": "https://www.grid.ac/institutes/grid.5596.f",
"name": [
"KU Leuven, Leuven, Belgium"
],
"type": "Organization"
},
"familyName": "De Raedt",
"givenName": "Luc",
"id": "sg:person.015333627665.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0169-023x(94)90023-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009065409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0169-023x(94)90023-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009065409"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68856-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014103340",
"https://doi.org/10.1007/978-3-540-68856-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-68856-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014103340",
"https://doi.org/10.1007/978-3-540-68856-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33558-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017971821",
"https://doi.org/10.1007/978-3-642-33558-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-33558-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017971821",
"https://doi.org/10.1007/978-3-642-33558-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-30164-8_258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030513665",
"https://doi.org/10.1007/978-0-387-30164-8_258"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2535838.2535850",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033234568"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1926385.1926423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034087112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1007361123060",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034235085",
"https://doi.org/10.1023/a:1007361123060"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11564096_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041371725",
"https://doi.org/10.1007/11564096_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11564096_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041371725",
"https://doi.org/10.1007/11564096_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11564096_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041371725",
"https://doi.org/10.1007/11564096_8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/195705.195708",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042038622"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/cje/bet075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045048920"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/comjnl/42.2.100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059479210"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1257/aer.100.2.573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064525201"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3233/ida-2000-43-403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107708734"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-10",
"datePublishedReg": "2017-10-01",
"description": "Spreadsheets, comma separated value files and other tabular data representations are in wide use today. However, writing, maintaining and identifying good formulas for tabular data and spreadsheets can be time-consuming and error-prone. We investigate the automatic learning of constraints (formulas and relations) in raw tabular data in an unsupervised way. We represent common spreadsheet formulas and relations through predicates and expressions whose arguments must satisfy the inherent properties of the constraint. The challenge is to automatically infer the set of constraints present in the data, without labeled examples or user feedback. We propose a two-stage generate and test method where the first stage uses constraint solving techniques to efficiently reduce the number of candidates, based on the predicate signatures. Our approach takes inspiration from inductive logic programming, constraint learning and constraint satisfaction. We show that we are able to accurately discover constraints in spreadsheets from various sources.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10994-017-5640-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1125588",
"issn": [
"0885-6125",
"1573-0565"
],
"name": "Machine Learning",
"type": "Periodical"
},
{
"issueNumber": "9-10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "106"
}
],
"name": "Learning constraints in spreadsheets and tabular data",
"pagination": "1441-1468",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ee8e771cea98aa210a69c8b7776605c7e30a1159ee7311eea3dd1acefe24174d"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10994-017-5640-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085869747"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10994-017-5640-x",
"https://app.dimensions.ai/details/publication/pub.1085869747"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10994-017-5640-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5640-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5640-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5640-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5640-x'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
21 PREDICATES
40 URIs
19 LITERALS
7 BLANK NODES