An evaluation of linear and non-linear models of expressive dynamics in classical piano and symphonic music View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-06

AUTHORS

Carlos Eduardo Cancino-Chacón, Thassilo Gadermaier, Gerhard Widmer, Maarten Grachten

ABSTRACT

Expressive interpretation forms an important but complex aspect of music, particularly in Western classical music. Modeling the relation between musical expression and structural aspects of the score being performed is an ongoing line of research. Prior work has shown that some simple numerical descriptors of the score (capturing dynamics annotations and pitch) are effective for predicting expressive dynamics in classical piano performances. Nevertheless, the features have only been tested in a very simple linear regression model. In this work, we explore the potential of non-linear and temporal modeling of expressive dynamics. Using a set of descriptors that capture different types of structure in the musical score, we compare linear and different non-linear models in a large-scale evaluation on three different corpora, involving both piano and orchestral music. To the best of our knowledge, this is the first study where models of musical expression are evaluated on both types of music. We show that, in addition to being more accurate, non-linear models describe interactions between numerical descriptors that linear models do not. More... »

PAGES

887-909

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-017-5631-y

DOI

http://dx.doi.org/10.1007/s10994-017-5631-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084028627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Performing Arts and Creative Writing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/19", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Creative Arts and Writing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Vienna, Austria", 
            "Department of Computational Perception, Johannes Kepler University, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cancino-Chac\u00f3n", 
        "givenName": "Carlos Eduardo", 
        "id": "sg:person.011512225241.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512225241.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gadermaier", 
        "givenName": "Thassilo", 
        "id": "sg:person.012307605641.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012307605641.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Vienna, Austria", 
            "Department of Computational Perception, Johannes Kepler University, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "Gerhard", 
        "id": "sg:person.013641401431.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Austrian Research Institute for Artificial Intelligence, Vienna, Austria", 
            "Department of Computational Perception, Johannes Kepler University, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grachten", 
        "givenName": "Maarten", 
        "id": "sg:person.010656143106.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656143106.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/14640748308402140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007503742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14640748308402140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007503742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/jnmr.31.1.37.8103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009581532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0929821042000317804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014150314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2668124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/mp.2006.23.5.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019714809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/mp.2012.30.3.291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09298215.2012.731071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022625509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.psych.48.1.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023393711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09298219808570748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027896608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2009.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030703354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/03057356030313002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033302908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/03057356030313002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033302908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033980789", 
          "https://doi.org/10.1007/bf00419657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033980789", 
          "https://doi.org/10.1007/bf00419657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/mp.2014.32.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035466383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(03)00016-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035588669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2665078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036515092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/40286178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039516570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/40285746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041824708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1525/mp.2002.20.1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047351785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-8751-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049014202", 
          "https://doi.org/10.1007/s10994-006-8751-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049139212", 
          "https://doi.org/10.1007/bf00419658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049139212", 
          "https://doi.org/10.1007/bf00419658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09298215.2010.523469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053103396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.650093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061229990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2014.2311013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1376133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062266232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.402843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062354132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.404425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062355714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.426687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062377942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/10079687x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062858953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10053-008-0052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070852418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2017.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083781179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "Expressive interpretation forms an important but complex aspect of music, particularly in Western classical music. Modeling the relation between musical expression and structural aspects of the score being performed is an ongoing line of research. Prior work has shown that some simple numerical descriptors of the score (capturing dynamics annotations and pitch) are effective for predicting expressive dynamics in classical piano performances. Nevertheless, the features have only been tested in a very simple linear regression model. In this work, we explore the potential of non-linear and temporal modeling of expressive dynamics. Using a set of descriptors that capture different types of structure in the musical score, we compare linear and different non-linear models in a large-scale evaluation on three different corpora, involving both piano and orchestral music. To the best of our knowledge, this is the first study where models of musical expression are evaluated on both types of music. We show that, in addition to being more accurate, non-linear models describe interactions between numerical descriptors that linear models do not.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-017-5631-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3797843", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4456706", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "106"
      }
    ], 
    "name": "An evaluation of linear and non-linear models of expressive dynamics in classical piano and symphonic music", 
    "pagination": "887-909", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d53a13f6d871499cb2d8c2dc88d7dc545ea4d70c2f663672a456d7d034b77e57"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-017-5631-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084028627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-017-5631-y", 
      "https://app.dimensions.ai/details/publication/pub.1084028627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54316_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10994-017-5631-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5631-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5631-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5631-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-017-5631-y'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-017-5631-y schema:about anzsrc-for:19
2 anzsrc-for:1904
3 schema:author N541b02b1f42048bc8a61aab13fa767c2
4 schema:citation sg:pub.10.1007/bf00419657
5 sg:pub.10.1007/bf00419658
6 sg:pub.10.1007/s10994-006-8751-3
7 https://doi.org/10.1016/j.cpc.2009.09.018
8 https://doi.org/10.1016/s0004-3702(03)00016-x
9 https://doi.org/10.1076/jnmr.31.1.37.8103
10 https://doi.org/10.1080/0929821042000317804
11 https://doi.org/10.1080/09298215.2010.523469
12 https://doi.org/10.1080/09298215.2012.731071
13 https://doi.org/10.1080/09298219808570748
14 https://doi.org/10.1080/14640748308402140
15 https://doi.org/10.1109/78.650093
16 https://doi.org/10.1109/mmul.2017.4
17 https://doi.org/10.1109/tip.2003.819861
18 https://doi.org/10.1109/tmm.2014.2311013
19 https://doi.org/10.1121/1.1376133
20 https://doi.org/10.1121/1.402843
21 https://doi.org/10.1121/1.404425
22 https://doi.org/10.1121/1.426687
23 https://doi.org/10.1137/10079687x
24 https://doi.org/10.1145/2665078
25 https://doi.org/10.1145/2668124
26 https://doi.org/10.1146/annurev.psych.48.1.115
27 https://doi.org/10.1162/neco.1997.9.8.1735
28 https://doi.org/10.1177/03057356030313002
29 https://doi.org/10.1525/mp.2002.20.1.3
30 https://doi.org/10.1525/mp.2006.23.5.365
31 https://doi.org/10.1525/mp.2012.30.3.291
32 https://doi.org/10.1525/mp.2014.32.1.51
33 https://doi.org/10.2307/40285746
34 https://doi.org/10.2307/40286178
35 https://doi.org/10.2478/v10053-008-0052-x
36 schema:datePublished 2017-06
37 schema:datePublishedReg 2017-06-01
38 schema:description Expressive interpretation forms an important but complex aspect of music, particularly in Western classical music. Modeling the relation between musical expression and structural aspects of the score being performed is an ongoing line of research. Prior work has shown that some simple numerical descriptors of the score (capturing dynamics annotations and pitch) are effective for predicting expressive dynamics in classical piano performances. Nevertheless, the features have only been tested in a very simple linear regression model. In this work, we explore the potential of non-linear and temporal modeling of expressive dynamics. Using a set of descriptors that capture different types of structure in the musical score, we compare linear and different non-linear models in a large-scale evaluation on three different corpora, involving both piano and orchestral music. To the best of our knowledge, this is the first study where models of musical expression are evaluated on both types of music. We show that, in addition to being more accurate, non-linear models describe interactions between numerical descriptors that linear models do not.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N33907857b5254f81b9e7c979d65309bf
43 Nda7129dcf6024363a7dac1dbf32e8da3
44 sg:journal.1125588
45 schema:name An evaluation of linear and non-linear models of expressive dynamics in classical piano and symphonic music
46 schema:pagination 887-909
47 schema:productId N247f62fdfe474fbd8f4cc80c7056b251
48 N31e22416b4ef47749ac2ffb0ac6f2a3c
49 N40b90c3cd98e470e9c9fecfac6363010
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028627
51 https://doi.org/10.1007/s10994-017-5631-y
52 schema:sdDatePublished 2019-04-11T10:18
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N949f9525e9c64fa28dfe9ae81b055d9b
55 schema:url https://link.springer.com/10.1007%2Fs10994-017-5631-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0cadee7fda474f72bc6e4a9f8a8dcee1 rdf:first sg:person.013641401431.40
60 rdf:rest Nb69d770020d5425491afaee0381dad1c
61 N247f62fdfe474fbd8f4cc80c7056b251 schema:name readcube_id
62 schema:value d53a13f6d871499cb2d8c2dc88d7dc545ea4d70c2f663672a456d7d034b77e57
63 rdf:type schema:PropertyValue
64 N31e22416b4ef47749ac2ffb0ac6f2a3c schema:name doi
65 schema:value 10.1007/s10994-017-5631-y
66 rdf:type schema:PropertyValue
67 N33907857b5254f81b9e7c979d65309bf schema:volumeNumber 106
68 rdf:type schema:PublicationVolume
69 N40b90c3cd98e470e9c9fecfac6363010 schema:name dimensions_id
70 schema:value pub.1084028627
71 rdf:type schema:PropertyValue
72 N541b02b1f42048bc8a61aab13fa767c2 rdf:first sg:person.011512225241.31
73 rdf:rest N863ae26ae9e84177b236132d28d4c115
74 N863ae26ae9e84177b236132d28d4c115 rdf:first sg:person.012307605641.37
75 rdf:rest N0cadee7fda474f72bc6e4a9f8a8dcee1
76 N949f9525e9c64fa28dfe9ae81b055d9b schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nb69d770020d5425491afaee0381dad1c rdf:first sg:person.010656143106.39
79 rdf:rest rdf:nil
80 Nda7129dcf6024363a7dac1dbf32e8da3 schema:issueNumber 6
81 rdf:type schema:PublicationIssue
82 anzsrc-for:19 schema:inDefinedTermSet anzsrc-for:
83 schema:name Studies in Creative Arts and Writing
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1904 schema:inDefinedTermSet anzsrc-for:
86 schema:name Performing Arts and Creative Writing
87 rdf:type schema:DefinedTerm
88 sg:grant.3797843 http://pending.schema.org/fundedItem sg:pub.10.1007/s10994-017-5631-y
89 rdf:type schema:MonetaryGrant
90 sg:grant.4456706 http://pending.schema.org/fundedItem sg:pub.10.1007/s10994-017-5631-y
91 rdf:type schema:MonetaryGrant
92 sg:journal.1125588 schema:issn 0885-6125
93 1573-0565
94 schema:name Machine Learning
95 rdf:type schema:Periodical
96 sg:person.010656143106.39 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
97 schema:familyName Grachten
98 schema:givenName Maarten
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656143106.39
100 rdf:type schema:Person
101 sg:person.011512225241.31 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
102 schema:familyName Cancino-Chacón
103 schema:givenName Carlos Eduardo
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011512225241.31
105 rdf:type schema:Person
106 sg:person.012307605641.37 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
107 schema:familyName Gadermaier
108 schema:givenName Thassilo
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012307605641.37
110 rdf:type schema:Person
111 sg:person.013641401431.40 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
112 schema:familyName Widmer
113 schema:givenName Gerhard
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40
115 rdf:type schema:Person
116 sg:pub.10.1007/bf00419657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033980789
117 https://doi.org/10.1007/bf00419657
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00419658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049139212
120 https://doi.org/10.1007/bf00419658
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10994-006-8751-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049014202
123 https://doi.org/10.1007/s10994-006-8751-3
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cpc.2009.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030703354
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0004-3702(03)00016-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035588669
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1076/jnmr.31.1.37.8103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581532
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/0929821042000317804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014150314
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/09298215.2010.523469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053103396
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/09298215.2012.731071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022625509
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/09298219808570748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027896608
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/14640748308402140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007503742
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/78.650093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061229990
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/mmul.2017.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083781179
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tmm.2014.2311013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698304
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1121/1.1376133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062266232
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1121/1.402843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062354132
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1121/1.404425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062355714
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1121/1.426687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062377942
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/10079687x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062858953
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/2665078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036515092
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/2668124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019459988
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1146/annurev.psych.48.1.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023393711
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1177/03057356030313002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033302908
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1525/mp.2002.20.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047351785
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1525/mp.2006.23.5.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019714809
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1525/mp.2012.30.3.291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482522
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1525/mp.2014.32.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035466383
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/40285746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041824708
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2307/40286178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039516570
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2478/v10053-008-0052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070852418
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence
184 schema:name Austrian Research Institute for Artificial Intelligence, Vienna, Austria
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
187 schema:name Austrian Research Institute for Artificial Intelligence, Vienna, Austria
188 Department of Computational Perception, Johannes Kepler University, Linz, Austria
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...