Bayesian learning of graphical vector autoregressions with unequal lag-lengths View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05

AUTHORS

Pekka Marttinen, Jukka Corander

ABSTRACT

Graphical modelling strategies have been recently discovered as a versatile tool for analyzing multivariate stochastic processes. Vector autoregressive processes can be structurally represented by mixed graphs having both directed and undirected edges between the variables representing process components. To allow for more expressive vector autoregressive structures, we consider models with separate time dynamics for each directed edge and non-decomposable graph topologies for the undirected part of the mixed graph. Contrary to static graphical models, the number of possible mixed graphs is extremely large even for small systems, and consequently, standard Bayesian computation based on Markov chain Monte Carlo is not in practice a feasible alternative for model learning. To obtain a numerically efficient approach we utilize a recent Bayesian information theoretic criterion for model learning, which has attractive properties when the potential model complexity is large relative to the size of the observed data set. The performance of our method is illustrated by analyzing both simulated and real data sets. Our simulation experiments demonstrate the gains in predictive accuracy which can obtained by considering structural learning of vector autoregressive processes instead of unstructured models. The analysis of the real data also shows that the understanding of the dynamics of a multivariate process can be improved significantly by considering more flexible model classes. More... »

PAGES

217-243

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-009-5101-2

DOI

http://dx.doi.org/10.1007/s10994-009-5101-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031082078


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marttinen", 
        "givenName": "Pekka", 
        "id": "sg:person.0753733617.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c5bo Akademi University", 
          "id": "https://www.grid.ac/institutes/grid.13797.3b", 
          "name": [
            "Abo Akademi University Address, Turku, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corander", 
        "givenName": "Jukka", 
        "id": "sg:person.01125514227.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02296197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000061961", 
          "https://doi.org/10.1007/bf02296197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000061961", 
          "https://doi.org/10.1007/bf02296197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(93)90510-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001474548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02532251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001604786", 
          "https://doi.org/10.1007/bf02532251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02532251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001604786", 
          "https://doi.org/10.1007/bf02532251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2005.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002652594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10849-005-9004-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003100601", 
          "https://doi.org/10.1007/s10849-005-9004-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10849-005-9004-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003100601", 
          "https://doi.org/10.1007/s10849-005-9004-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004711139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005187773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02511639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006117595", 
          "https://doi.org/10.1007/bf02511639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02511639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006117595", 
          "https://doi.org/10.1007/bf02511639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008870295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-003-0400-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009013893", 
          "https://doi.org/10.1007/s00422-003-0400-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015339907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90014-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015339907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9469.00297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015409201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001840000055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022577755", 
          "https://doi.org/10.1007/s001840000055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.2005.00460.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022614702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.2005.00460.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022614702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/088342304000000026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028449972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028550317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/int.20138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028550317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524560", 
          "https://doi.org/10.1007/bf00994016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/01.ane.0000204385.01983.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036661194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1213/01.ane.0000204385.01983.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036661194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-259x(02)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-259x(02)00033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0573-8555(04)69009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038789181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176349846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042068387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9469.2006.00482.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046222497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047853078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049791651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000368499324237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050789131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/89.2.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/90.2.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2004.831032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214505000000664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/07-ba204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12660/bre.v16n11996.2878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064589953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3318737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070261838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61695-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710346", 
          "https://doi.org/10.1007/978-3-642-61695-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61695-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710346", 
          "https://doi.org/10.1007/978-3-642-61695-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "Graphical modelling strategies have been recently discovered as a versatile tool for analyzing multivariate stochastic processes. Vector autoregressive processes can be structurally represented by mixed graphs having both directed and undirected edges between the variables representing process components. To allow for more expressive vector autoregressive structures, we consider models with separate time dynamics for each directed edge and non-decomposable graph topologies for the undirected part of the mixed graph. Contrary to static graphical models, the number of possible mixed graphs is extremely large even for small systems, and consequently, standard Bayesian computation based on Markov chain Monte Carlo is not in practice a feasible alternative for model learning. To obtain a numerically efficient approach we utilize a recent Bayesian information theoretic criterion for model learning, which has attractive properties when the potential model complexity is large relative to the size of the observed data set. The performance of our method is illustrated by analyzing both simulated and real data sets. Our simulation experiments demonstrate the gains in predictive accuracy which can obtained by considering structural learning of vector autoregressive processes instead of unstructured models. The analysis of the real data also shows that the understanding of the dynamics of a multivariate process can be improved significantly by considering more flexible model classes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-009-5101-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "Bayesian learning of graphical vector autoregressions with unequal lag-lengths", 
    "pagination": "217-243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "94127b2022adaa0eb3b11464b7c117ccbec61c23ba38eaf4047fbe84d99baa23"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-009-5101-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031082078"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-009-5101-2", 
      "https://app.dimensions.ai/details/publication/pub.1031082078"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000589.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10994-009-5101-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-009-5101-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-009-5101-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-009-5101-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-009-5101-2'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-009-5101-2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nade3427c1cab4d9c869eb505eb06abb7
4 schema:citation sg:pub.10.1007/978-3-642-61695-2
5 sg:pub.10.1007/bf00994016
6 sg:pub.10.1007/bf02296197
7 sg:pub.10.1007/bf02511639
8 sg:pub.10.1007/bf02532251
9 sg:pub.10.1007/s001840000055
10 sg:pub.10.1007/s00422-003-0400-3
11 sg:pub.10.1007/s10849-005-9004-8
12 https://doi.org/10.1002/int.20138
13 https://doi.org/10.1002/sim.1209
14 https://doi.org/10.1016/0004-3702(94)90014-0
15 https://doi.org/10.1016/0012-365x(93)90510-z
16 https://doi.org/10.1016/j.jeconom.2005.06.032
17 https://doi.org/10.1016/j.jphysparis.2005.06.006
18 https://doi.org/10.1016/j.spl.2005.04.002
19 https://doi.org/10.1016/s0047-259x(02)00033-7
20 https://doi.org/10.1016/s0573-8555(04)69009-2
21 https://doi.org/10.1080/000368499324237
22 https://doi.org/10.1093/biomet/89.2.457
23 https://doi.org/10.1093/biomet/90.2.251
24 https://doi.org/10.1098/rstb.2005.1645
25 https://doi.org/10.1098/rstb.2005.1654
26 https://doi.org/10.1109/tsp.2004.831032
27 https://doi.org/10.1111/1467-9469.00297
28 https://doi.org/10.1111/j.1467-9469.2006.00482.x
29 https://doi.org/10.1111/j.1467-9892.2005.00460.x
30 https://doi.org/10.1198/016214505000000664
31 https://doi.org/10.1213/01.ane.0000204385.01983.61
32 https://doi.org/10.1214/07-ba204
33 https://doi.org/10.1214/088342304000000026
34 https://doi.org/10.1214/aos/1176344136
35 https://doi.org/10.1214/aos/1176349846
36 https://doi.org/10.12660/bre.v16n11996.2878
37 https://doi.org/10.2307/1911729
38 https://doi.org/10.2307/1912791
39 https://doi.org/10.2307/3318737
40 schema:datePublished 2009-05
41 schema:datePublishedReg 2009-05-01
42 schema:description Graphical modelling strategies have been recently discovered as a versatile tool for analyzing multivariate stochastic processes. Vector autoregressive processes can be structurally represented by mixed graphs having both directed and undirected edges between the variables representing process components. To allow for more expressive vector autoregressive structures, we consider models with separate time dynamics for each directed edge and non-decomposable graph topologies for the undirected part of the mixed graph. Contrary to static graphical models, the number of possible mixed graphs is extremely large even for small systems, and consequently, standard Bayesian computation based on Markov chain Monte Carlo is not in practice a feasible alternative for model learning. To obtain a numerically efficient approach we utilize a recent Bayesian information theoretic criterion for model learning, which has attractive properties when the potential model complexity is large relative to the size of the observed data set. The performance of our method is illustrated by analyzing both simulated and real data sets. Our simulation experiments demonstrate the gains in predictive accuracy which can obtained by considering structural learning of vector autoregressive processes instead of unstructured models. The analysis of the real data also shows that the understanding of the dynamics of a multivariate process can be improved significantly by considering more flexible model classes.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N5ecaeb3f2f9b45f99c2f3ba3903f997f
47 N9f0beeccf4734d31abae8604514d08ac
48 sg:journal.1125588
49 schema:name Bayesian learning of graphical vector autoregressions with unequal lag-lengths
50 schema:pagination 217-243
51 schema:productId N637df6ffc8c7455b9311bc4f4c7b30bd
52 Na9aea0148b4046f5b9683b873214226b
53 Nc88c644522fa4c6fb70d331e217040b1
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031082078
55 https://doi.org/10.1007/s10994-009-5101-2
56 schema:sdDatePublished 2019-04-10T17:42
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Na26dfea7e37248888156ad10b5bafd2c
59 schema:url http://link.springer.com/10.1007%2Fs10994-009-5101-2
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N5ecaeb3f2f9b45f99c2f3ba3903f997f schema:volumeNumber 75
64 rdf:type schema:PublicationVolume
65 N637df6ffc8c7455b9311bc4f4c7b30bd schema:name doi
66 schema:value 10.1007/s10994-009-5101-2
67 rdf:type schema:PropertyValue
68 N6440c0fb7e764024989fad4261cb8a07 rdf:first sg:person.01125514227.61
69 rdf:rest rdf:nil
70 N9f0beeccf4734d31abae8604514d08ac schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 Na26dfea7e37248888156ad10b5bafd2c schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Na9aea0148b4046f5b9683b873214226b schema:name readcube_id
75 schema:value 94127b2022adaa0eb3b11464b7c117ccbec61c23ba38eaf4047fbe84d99baa23
76 rdf:type schema:PropertyValue
77 Nade3427c1cab4d9c869eb505eb06abb7 rdf:first sg:person.0753733617.28
78 rdf:rest N6440c0fb7e764024989fad4261cb8a07
79 Nc88c644522fa4c6fb70d331e217040b1 schema:name dimensions_id
80 schema:value pub.1031082078
81 rdf:type schema:PropertyValue
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
86 schema:name Statistics
87 rdf:type schema:DefinedTerm
88 sg:journal.1125588 schema:issn 0885-6125
89 1573-0565
90 schema:name Machine Learning
91 rdf:type schema:Periodical
92 sg:person.01125514227.61 schema:affiliation https://www.grid.ac/institutes/grid.13797.3b
93 schema:familyName Corander
94 schema:givenName Jukka
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125514227.61
96 rdf:type schema:Person
97 sg:person.0753733617.28 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
98 schema:familyName Marttinen
99 schema:givenName Pekka
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753733617.28
101 rdf:type schema:Person
102 sg:pub.10.1007/978-3-642-61695-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710346
103 https://doi.org/10.1007/978-3-642-61695-2
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bf00994016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524560
106 https://doi.org/10.1007/bf00994016
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02296197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000061961
109 https://doi.org/10.1007/bf02296197
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02511639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006117595
112 https://doi.org/10.1007/bf02511639
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02532251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001604786
115 https://doi.org/10.1007/bf02532251
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s001840000055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022577755
118 https://doi.org/10.1007/s001840000055
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00422-003-0400-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009013893
121 https://doi.org/10.1007/s00422-003-0400-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10849-005-9004-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003100601
124 https://doi.org/10.1007/s10849-005-9004-8
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/int.20138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028550317
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/sim.1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008870295
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0004-3702(94)90014-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015339907
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0012-365x(93)90510-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001474548
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jeconom.2005.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004711139
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jphysparis.2005.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002652594
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.spl.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047853078
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0047-259x(02)00033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038165512
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0573-8555(04)69009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038789181
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/000368499324237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050789131
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/biomet/89.2.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421183
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/biomet/90.2.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421274
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rstb.2005.1645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049791651
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1098/rstb.2005.1654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005187773
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tsp.2004.831032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799256
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/1467-9469.00297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015409201
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1467-9469.2006.00482.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046222497
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1467-9892.2005.00460.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022614702
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1198/016214505000000664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198398
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1213/01.ane.0000204385.01983.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036661194
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1214/07-ba204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389810
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1214/088342304000000026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028449972
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1214/aos/1176349846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042068387
173 rdf:type schema:CreativeWork
174 https://doi.org/10.12660/bre.v16n11996.2878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064589953
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2307/1911729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639715
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2307/1912791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640326
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2307/3318737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070261838
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.13797.3b schema:alternateName Åbo Akademi University
183 schema:name Abo Akademi University Address, Turku, Finland
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
186 schema:name University of Helsinki, Helsinki, Finland
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...