A note on Platt’s probabilistic outputs for support vector machines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-10

AUTHORS

Hsuan-Tien Lin, Chih-Jen Lin, Ruby C. Weng

ABSTRACT

Platt’s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included. More... »

PAGES

267-276

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6

DOI

http://dx.doi.org/10.1007/s10994-007-5018-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039556605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Hsuan-Tien", 
        "id": "sg:person.01106205511.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106205511.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chih-Jen", 
        "id": "sg:person.01314272132.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314272132.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chengchi University", 
          "id": "https://www.grid.ac/institutes/grid.412042.1", 
          "name": [
            "Department of Statistics, National Chengchi University, 116, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Ruby C.", 
        "id": "sg:person.010773750717.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773750717.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/103162.103163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020479097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612844", 
          "https://doi.org/10.1007/bfb0067700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "Platt\u2019s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-007-5018-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "A note on Platt\u2019s probabilistic outputs for support vector machines", 
    "pagination": "267-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc6dc8416df973be16dd74a146ca84a4bc7ab3323103b9c541f40cb8f34b7e9e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-007-5018-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039556605"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-007-5018-6", 
      "https://app.dimensions.ai/details/publication/pub.1039556605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10994-007-5018-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-007-5018-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nd7c53801f05e47898ea4c2f03c40f9bb
4 schema:citation sg:pub.10.1007/b98874
5 sg:pub.10.1007/bfb0067700
6 https://doi.org/10.1145/103162.103163
7 schema:datePublished 2007-10
8 schema:datePublishedReg 2007-10-01
9 schema:description Platt’s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N5ada3ddc2c8a4fbd993447139a11e65f
14 Ncc98b6ccaaed4265b3783d76b8d999e8
15 sg:journal.1125588
16 schema:name A note on Platt’s probabilistic outputs for support vector machines
17 schema:pagination 267-276
18 schema:productId N1f28e5942246401a8a2248b039445cc8
19 N227a87e7698e4d2d8bcffe2ee3914ae5
20 N58539320d9e14d30b168584558b843ac
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556605
22 https://doi.org/10.1007/s10994-007-5018-6
23 schema:sdDatePublished 2019-04-10T19:09
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N9f4af9901e4b4858bdc2d294240da928
26 schema:url http://link.springer.com/10.1007%2Fs10994-007-5018-6
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N1f28e5942246401a8a2248b039445cc8 schema:name dimensions_id
31 schema:value pub.1039556605
32 rdf:type schema:PropertyValue
33 N227a87e7698e4d2d8bcffe2ee3914ae5 schema:name readcube_id
34 schema:value bc6dc8416df973be16dd74a146ca84a4bc7ab3323103b9c541f40cb8f34b7e9e
35 rdf:type schema:PropertyValue
36 N5240b214715b41fbad69b453f5a8e3f7 rdf:first sg:person.01314272132.01
37 rdf:rest N645e0cb034914073b4f14d9db1061140
38 N58539320d9e14d30b168584558b843ac schema:name doi
39 schema:value 10.1007/s10994-007-5018-6
40 rdf:type schema:PropertyValue
41 N5ada3ddc2c8a4fbd993447139a11e65f schema:volumeNumber 68
42 rdf:type schema:PublicationVolume
43 N645e0cb034914073b4f14d9db1061140 rdf:first sg:person.010773750717.02
44 rdf:rest rdf:nil
45 N9f4af9901e4b4858bdc2d294240da928 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Ncc98b6ccaaed4265b3783d76b8d999e8 schema:issueNumber 3
48 rdf:type schema:PublicationIssue
49 Nd7c53801f05e47898ea4c2f03c40f9bb rdf:first sg:person.01106205511.38
50 rdf:rest N5240b214715b41fbad69b453f5a8e3f7
51 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
52 schema:name Information and Computing Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
55 schema:name Computation Theory and Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1125588 schema:issn 0885-6125
58 1573-0565
59 schema:name Machine Learning
60 rdf:type schema:Periodical
61 sg:person.010773750717.02 schema:affiliation https://www.grid.ac/institutes/grid.412042.1
62 schema:familyName Weng
63 schema:givenName Ruby C.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773750717.02
65 rdf:type schema:Person
66 sg:person.01106205511.38 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
67 schema:familyName Lin
68 schema:givenName Hsuan-Tien
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106205511.38
70 rdf:type schema:Person
71 sg:person.01314272132.01 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
72 schema:familyName Lin
73 schema:givenName Chih-Jen
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314272132.01
75 rdf:type schema:Person
76 sg:pub.10.1007/b98874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038119
77 https://doi.org/10.1007/b98874
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bfb0067700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612844
80 https://doi.org/10.1007/bfb0067700
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1145/103162.103163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020479097
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.19188.39 schema:alternateName National Taiwan University
85 schema:name Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.412042.1 schema:alternateName National Chengchi University
88 schema:name Department of Statistics, National Chengchi University, 116, Taipei, Taiwan
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...