A note on Platt’s probabilistic outputs for support vector machines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-10

AUTHORS

Hsuan-Tien Lin, Chih-Jen Lin, Ruby C. Weng

ABSTRACT

Platt’s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included. More... »

PAGES

267-276

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6

DOI

http://dx.doi.org/10.1007/s10994-007-5018-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039556605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Hsuan-Tien", 
        "id": "sg:person.01106205511.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106205511.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Taiwan University", 
          "id": "https://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Chih-Jen", 
        "id": "sg:person.01314272132.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314272132.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Chengchi University", 
          "id": "https://www.grid.ac/institutes/grid.412042.1", 
          "name": [
            "Department of Statistics, National Chengchi University, 116, Taipei, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weng", 
        "givenName": "Ruby C.", 
        "id": "sg:person.010773750717.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773750717.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015038119", 
          "https://doi.org/10.1007/b98874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/103162.103163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020479097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0067700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024612844", 
          "https://doi.org/10.1007/bfb0067700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "Platt\u2019s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10994-007-5018-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "A note on Platt\u2019s probabilistic outputs for support vector machines", 
    "pagination": "267-276", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bc6dc8416df973be16dd74a146ca84a4bc7ab3323103b9c541f40cb8f34b7e9e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-007-5018-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039556605"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-007-5018-6", 
      "https://app.dimensions.ai/details/publication/pub.1039556605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10994-007-5018-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-007-5018-6'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-007-5018-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N2e55bb00633643b2924e36391f8a3841
4 schema:citation sg:pub.10.1007/b98874
5 sg:pub.10.1007/bfb0067700
6 https://doi.org/10.1145/103162.103163
7 schema:datePublished 2007-10
8 schema:datePublishedReg 2007-10-01
9 schema:description Platt’s probabilistic outputs for Support Vector Machines (Platt, J. in Smola, A., et al. (eds.) Advances in large margin classifiers. Cambridge, 2000) has been popular for applications that require posterior class probabilities. In this note, we propose an improved algorithm that theoretically converges and avoids numerical difficulties. A simple and ready-to-use pseudo code is included.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf Nb79ce7923e6845a0845fb39ed4b4ed76
14 Nbcf69f9d59aa432895a7fe2d4a2bf21c
15 sg:journal.1125588
16 schema:name A note on Platt’s probabilistic outputs for support vector machines
17 schema:pagination 267-276
18 schema:productId N3a47d09aaf4149f4987a713577c2d010
19 N617ead7d5ee44260a7e58a811df14dd5
20 Ncacd69ceb7214a55885149bdc06b72d0
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039556605
22 https://doi.org/10.1007/s10994-007-5018-6
23 schema:sdDatePublished 2019-04-10T19:09
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N51e43ca946574729a249a09ee242cdf2
26 schema:url http://link.springer.com/10.1007%2Fs10994-007-5018-6
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N2e55bb00633643b2924e36391f8a3841 rdf:first sg:person.01106205511.38
31 rdf:rest N6c9dbc0e40d04e58855bc3a79f02e2dd
32 N3a47d09aaf4149f4987a713577c2d010 schema:name dimensions_id
33 schema:value pub.1039556605
34 rdf:type schema:PropertyValue
35 N51e43ca946574729a249a09ee242cdf2 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N617ead7d5ee44260a7e58a811df14dd5 schema:name readcube_id
38 schema:value bc6dc8416df973be16dd74a146ca84a4bc7ab3323103b9c541f40cb8f34b7e9e
39 rdf:type schema:PropertyValue
40 N6c9dbc0e40d04e58855bc3a79f02e2dd rdf:first sg:person.01314272132.01
41 rdf:rest Ne0a053a50e114eef99338c8dcd0de10e
42 Nb79ce7923e6845a0845fb39ed4b4ed76 schema:volumeNumber 68
43 rdf:type schema:PublicationVolume
44 Nbcf69f9d59aa432895a7fe2d4a2bf21c schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 Ncacd69ceb7214a55885149bdc06b72d0 schema:name doi
47 schema:value 10.1007/s10994-007-5018-6
48 rdf:type schema:PropertyValue
49 Ne0a053a50e114eef99338c8dcd0de10e rdf:first sg:person.010773750717.02
50 rdf:rest rdf:nil
51 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
52 schema:name Information and Computing Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
55 schema:name Computation Theory and Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1125588 schema:issn 0885-6125
58 1573-0565
59 schema:name Machine Learning
60 rdf:type schema:Periodical
61 sg:person.010773750717.02 schema:affiliation https://www.grid.ac/institutes/grid.412042.1
62 schema:familyName Weng
63 schema:givenName Ruby C.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773750717.02
65 rdf:type schema:Person
66 sg:person.01106205511.38 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
67 schema:familyName Lin
68 schema:givenName Hsuan-Tien
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106205511.38
70 rdf:type schema:Person
71 sg:person.01314272132.01 schema:affiliation https://www.grid.ac/institutes/grid.19188.39
72 schema:familyName Lin
73 schema:givenName Chih-Jen
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314272132.01
75 rdf:type schema:Person
76 sg:pub.10.1007/b98874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015038119
77 https://doi.org/10.1007/b98874
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bfb0067700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612844
80 https://doi.org/10.1007/bfb0067700
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1145/103162.103163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020479097
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.19188.39 schema:alternateName National Taiwan University
85 schema:name Department of Computer Science and Information Engineering, National Taiwan University, 106, Taipei, Taiwan
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.412042.1 schema:alternateName National Chengchi University
88 schema:name Department of Statistics, National Chengchi University, 116, Taipei, Taiwan
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...