Guest Editorial: Machine learning in and for music View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-12

AUTHORS

G. Widmer

ABSTRACT

N/A

PAGES

347-347

Journal

TITLE

Machine Learning

ISSUE

2-3

VOLUME

65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10994-006-0588-2

DOI

http://dx.doi.org/10.1007/s10994-006-0588-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015906839


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Research Institute for Artificial Intelligence", 
          "id": "https://www.grid.ac/institutes/grid.432019.d", 
          "name": [
            "Department of Computational Perception, Johannes Kepler Univeristy Linz, Austria", 
            "Austrian Research Institute for Artificial Intelligence, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "G.", 
        "id": "sg:person.013641401431.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s10994-006-0588-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "name": "Guest Editorial: Machine learning in and for music", 
    "pagination": "347-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bcb4b182e76c0d0f58336b6568d837f014e312dc2f8b393c82954fc4eea07ec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10994-006-0588-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015906839"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10994-006-0588-2", 
      "https://app.dimensions.ai/details/publication/pub.1015906839"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10994-006-0588-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10994-006-0588-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10994-006-0588-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10994-006-0588-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10994-006-0588-2'


 

This table displays all metadata directly associated to this object as RDF triples.

53 TRIPLES      18 PREDICATES      24 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10994-006-0588-2 schema:author N0021891550f04d719002e98de719cb18
2 schema:datePublished 2006-12
3 schema:datePublishedReg 2006-12-01
4 schema:genre non_research_article
5 schema:inLanguage en
6 schema:isAccessibleForFree false
7 schema:isPartOf N4bdddd3f89744d7689e7e603e0320de6
8 Nc56938fcdfbb413d80e2b74592407bd1
9 sg:journal.1125588
10 schema:name Guest Editorial: Machine learning in and for music
11 schema:pagination 347-347
12 schema:productId N8e29a8acb497486e963aad6a6e59c5db
13 Nbea1b711cf0c43b88d7ce11b3a57caf4
14 Nfc5dc1faf6864c48bb9757dc2060c3c1
15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015906839
16 https://doi.org/10.1007/s10994-006-0588-2
17 schema:sdDatePublished 2019-04-10T17:31
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher Nabeb689e1e5842a692255b157f28ac4d
20 schema:url http://link.springer.com/10.1007%2Fs10994-006-0588-2
21 sgo:license sg:explorer/license/
22 sgo:sdDataset articles
23 rdf:type schema:ScholarlyArticle
24 N0021891550f04d719002e98de719cb18 rdf:first sg:person.013641401431.40
25 rdf:rest rdf:nil
26 N4bdddd3f89744d7689e7e603e0320de6 schema:issueNumber 2-3
27 rdf:type schema:PublicationIssue
28 N8e29a8acb497486e963aad6a6e59c5db schema:name dimensions_id
29 schema:value pub.1015906839
30 rdf:type schema:PropertyValue
31 Nabeb689e1e5842a692255b157f28ac4d schema:name Springer Nature - SN SciGraph project
32 rdf:type schema:Organization
33 Nbea1b711cf0c43b88d7ce11b3a57caf4 schema:name doi
34 schema:value 10.1007/s10994-006-0588-2
35 rdf:type schema:PropertyValue
36 Nc56938fcdfbb413d80e2b74592407bd1 schema:volumeNumber 65
37 rdf:type schema:PublicationVolume
38 Nfc5dc1faf6864c48bb9757dc2060c3c1 schema:name readcube_id
39 schema:value 4bcb4b182e76c0d0f58336b6568d837f014e312dc2f8b393c82954fc4eea07ec
40 rdf:type schema:PropertyValue
41 sg:journal.1125588 schema:issn 0885-6125
42 1573-0565
43 schema:name Machine Learning
44 rdf:type schema:Periodical
45 sg:person.013641401431.40 schema:affiliation https://www.grid.ac/institutes/grid.432019.d
46 schema:familyName Widmer
47 schema:givenName G.
48 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641401431.40
49 rdf:type schema:Person
50 https://www.grid.ac/institutes/grid.432019.d schema:alternateName Austrian Research Institute for Artificial Intelligence
51 schema:name Austrian Research Institute for Artificial Intelligence, Vienna, Austria
52 Department of Computational Perception, Johannes Kepler Univeristy Linz, Austria
53 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...