An investigation of Jones optimality and BTI-universal specializers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09

AUTHORS

Robert Glück

ABSTRACT

Jones optimality implies that a program specializer is strong enough to remove an entire level of self-interpretation. This paper argues that Jones optimality, which was originally devised as a criterion for self-applicable specializers, plays a fundamental role in the use of a binding-time improvement prepass prior to specialization. We establish that, regardless of the binding-time improvements applied to a subject program (no matter how extensively), a specializer that is not Jones-optimal is strictly weaker than a specializer that is Jones-optimal. We describe the main approaches that increase the strength of a specializer without requiring its modification, namely incremental specialization and the interpretive approach, and show that they are equally powerful when the specializer is bti-universal. Since this includes the generation of program specializers from interpreters, the theoretical possibility of bootstrapping powerful specializers is established. More... »

PAGES

283

References to SciGraph publications

  • 1996. ML pattern match compilation and partial evaluation in PARTIAL EVALUATION
  • 1994. Generating transformers for deforestation and supercompilation in STATIC ANALYSIS
  • 1993. Occam's razor in metacomputation: the notion of a perfect process tree in STATIC ANALYSIS
  • 1996. Polyvariant expansion and compiler generators in PERSPECTIVES OF SYSTEM INFORMATICS
  • 1996. Evolution of partial evaluators: Removing inherited limits in PARTIAL EVALUATION
  • 2001. Tag Elimination and Jones-Optimality in PROGRAMS AS DATA OBJECTS
  • 1986. The structure of a self-applicable partial evaluator in PROGRAMS AS DATA OBJECTS
  • 2004. The Translation Power of the Futamura Projections in PERSPECTIVES OF SYSTEM INFORMATICS
  • 2001-06-01. On Jones-Optimal Specialization for Strongly Typed Languages in SEMANTICS, APPLICATIONS, AND IMPLEMENTATION OF PROGRAM GENERATION
  • 2008-06. Efficient and flexible access control via Jones-optimal logic program specialisation in HIGHER-ORDER AND SYMBOLIC COMPUTATION
  • 2003-02-28. Tagging, Encoding, and Jones Optimality in PROGRAMMING LANGUAGES AND SYSTEMS
  • 1999. An Introduction to Online and Offline Partial Evaluation Using a Simple Flowchart Language in PARTIAL EVALUATION
  • 1999. Inherited Limits in PARTIAL EVALUATION
  • 2002. The Abstraction and Instantiation of String-Matching Programs in THE ESSENCE OF COMPUTATION
  • 2002. WSDFU: Program Transformation System Based on Generalized Partial Computation in THE ESSENCE OF COMPUTATION
  • 1990. Partial evaluation, self-application and types in AUTOMATA, LANGUAGES AND PROGRAMMING
  • 1995-09. The essence of eta-expansion in partial evaluation in LISP AND SYMBOLIC COMPUTATION
  • 1991. For a better support of static data flow in FUNCTIONAL PROGRAMMING LANGUAGES AND COMPUTER ARCHITECTURE
  • 1995. Efficient multi-level generating extensions for program specialization in PROGRAMMING LANGUAGES: IMPLEMENTATIONS, LOGICS AND PROGRAMS
  • 2008-06. Imperative-program transformation by instrumented-interpreter specialization in HIGHER-ORDER AND SYMBOLIC COMPUTATION
  • 2000-11-24. Combining Semantics with Non-standard Interpreter Hierarchies in FST TCS 2000: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE
  • 2006. On Jones-Optimal Specializers: A Case Study Using Unmix in PROGRAMMING LANGUAGES AND SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10990-008-9033-5

    DOI

    http://dx.doi.org/10.1007/s10990-008-9033-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029756061


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Copenhagen", 
              "id": "https://www.grid.ac/institutes/grid.5254.6", 
              "name": [
                "DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gl\u00fcck", 
            "givenName": "Robert", 
            "id": "sg:person.010754010217.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-16446-4_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000053549", 
              "https://doi.org/10.1007/3-540-16446-4_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0020-0190(97)00055-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000980817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/568173.568175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001092670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3540543961_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001207932", 
              "https://doi.org/10.1007/3540543961_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/331119.331417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001420988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11924661_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003898112", 
              "https://doi.org/10.1007/11924661_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11924661_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003898112", 
              "https://doi.org/10.1007/11924661_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-57264-3_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003987904", 
              "https://doi.org/10.1007/3-540-57264-3_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-58485-4_57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007111166", 
              "https://doi.org/10.1007/3-540-58485-4_57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/963778.963784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010449995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/215465.215598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010628985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45350-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012278693", 
              "https://doi.org/10.1007/3-540-45350-4_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45350-4_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012278693", 
              "https://doi.org/10.1007/3-540-45350-4_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47018-2_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013466468", 
              "https://doi.org/10.1007/3-540-47018-2_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800000757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016061186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-0190(77)90078-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016252608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36377-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019023069", 
              "https://doi.org/10.1007/3-540-36377-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01019004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020339008", 
              "https://doi.org/10.1007/bf01019004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0026825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021776056", 
              "https://doi.org/10.1007/bfb0026825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10990-008-9030-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023626027", 
              "https://doi.org/10.1007/s10990-008-9030-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/249069.231419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024696092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36377-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027040707", 
              "https://doi.org/10.1007/3-540-36377-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-0190(89)90113-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028126397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0032064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028626654", 
              "https://doi.org/10.1007/bfb0032064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scico.2004.03.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029133717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62064-8_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029529197", 
              "https://doi.org/10.1007/3-540-62064-8_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44978-7_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031192844", 
              "https://doi.org/10.1007/3-540-44978-7_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1328408.1328433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032479880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10990-008-9027-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032631334", 
              "https://doi.org/10.1007/s10990-008-9027-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36575-3_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033644800", 
              "https://doi.org/10.1007/3-540-36575-3_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36575-3_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033644800", 
              "https://doi.org/10.1007/3-540-36575-3_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/154630.154637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034160022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61580-6_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036259674", 
              "https://doi.org/10.1007/3-540-61580-6_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800001167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038404271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-47018-2_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038408397", 
              "https://doi.org/10.1007/3-540-47018-2_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(86)90173-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038643339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3975(86)90173-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038643339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44450-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007835", 
              "https://doi.org/10.1007/3-540-44450-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44450-5_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040007835", 
              "https://doi.org/10.1007/3-540-44450-5_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0956796800002008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042426034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39866-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048960688", 
              "https://doi.org/10.1007/978-3-540-39866-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39866-0_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048960688", 
              "https://doi.org/10.1007/978-3-540-39866-0_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/143165.143220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051821774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-61580-6_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053155927", 
              "https://doi.org/10.1007/3-540-61580-6_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccl.1994.288382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093265211"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-09", 
        "datePublishedReg": "2008-09-01", 
        "description": "Jones optimality implies that a program specializer is strong enough to remove an entire level of self-interpretation. This paper argues that Jones optimality, which was originally devised as a criterion for self-applicable specializers, plays a fundamental role in the use of a binding-time improvement prepass prior to specialization. We establish that, regardless of the binding-time improvements applied to a subject program (no matter how extensively), a specializer that is not Jones-optimal is strictly weaker than a specializer that is Jones-optimal. We describe the main approaches that increase the strength of a specializer without requiring its modification, namely incremental specialization and the interpretive approach, and show that they are equally powerful when the specializer is bti-universal. Since this includes the generation of program specializers from interpreters, the theoretical possibility of bootstrapping powerful specializers is established.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10990-008-9033-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1273809", 
            "issn": [
              "1388-3690", 
              "2212-0793"
            ], 
            "name": "Higher-Order and Symbolic Computation", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "An investigation of Jones optimality and BTI-universal specializers", 
        "pagination": "283", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8dc0b7162578abd2c7e5cdd4311af8e0cf00b131867bbc9796514bd5e6d2bc42"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10990-008-9033-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029756061"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10990-008-9033-5", 
          "https://app.dimensions.ai/details/publication/pub.1029756061"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10990-008-9033-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10990-008-9033-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10990-008-9033-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10990-008-9033-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10990-008-9033-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    200 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10990-008-9033-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Necfe5a200e0b41648b40a58c442f70ad
    4 schema:citation sg:pub.10.1007/11924661_25
    5 sg:pub.10.1007/3-540-16446-4_14
    6 sg:pub.10.1007/3-540-36377-7_15
    7 sg:pub.10.1007/3-540-36377-7_16
    8 sg:pub.10.1007/3-540-36575-3_23
    9 sg:pub.10.1007/3-540-44450-5_16
    10 sg:pub.10.1007/3-540-44978-7_15
    11 sg:pub.10.1007/3-540-45350-4_11
    12 sg:pub.10.1007/3-540-47018-2_2
    13 sg:pub.10.1007/3-540-47018-2_6
    14 sg:pub.10.1007/3-540-57264-3_34
    15 sg:pub.10.1007/3-540-58485-4_57
    16 sg:pub.10.1007/3-540-61580-6_15
    17 sg:pub.10.1007/3-540-61580-6_22
    18 sg:pub.10.1007/3-540-62064-8_24
    19 sg:pub.10.1007/3540543961_24
    20 sg:pub.10.1007/978-3-540-39866-0_16
    21 sg:pub.10.1007/bf01019004
    22 sg:pub.10.1007/bfb0026825
    23 sg:pub.10.1007/bfb0032064
    24 sg:pub.10.1007/s10990-008-9027-3
    25 sg:pub.10.1007/s10990-008-9030-8
    26 https://doi.org/10.1016/0020-0190(77)90078-3
    27 https://doi.org/10.1016/0020-0190(89)90113-0
    28 https://doi.org/10.1016/0304-3975(86)90173-8
    29 https://doi.org/10.1016/j.scico.2004.03.010
    30 https://doi.org/10.1016/s0020-0190(97)00055-0
    31 https://doi.org/10.1017/s0956796800000757
    32 https://doi.org/10.1017/s0956796800001167
    33 https://doi.org/10.1017/s0956796800002008
    34 https://doi.org/10.1109/iccl.1994.288382
    35 https://doi.org/10.1145/1328408.1328433
    36 https://doi.org/10.1145/143165.143220
    37 https://doi.org/10.1145/154630.154637
    38 https://doi.org/10.1145/215465.215598
    39 https://doi.org/10.1145/249069.231419
    40 https://doi.org/10.1145/331119.331417
    41 https://doi.org/10.1145/568173.568175
    42 https://doi.org/10.1145/963778.963784
    43 schema:datePublished 2008-09
    44 schema:datePublishedReg 2008-09-01
    45 schema:description Jones optimality implies that a program specializer is strong enough to remove an entire level of self-interpretation. This paper argues that Jones optimality, which was originally devised as a criterion for self-applicable specializers, plays a fundamental role in the use of a binding-time improvement prepass prior to specialization. We establish that, regardless of the binding-time improvements applied to a subject program (no matter how extensively), a specializer that is not Jones-optimal is strictly weaker than a specializer that is Jones-optimal. We describe the main approaches that increase the strength of a specializer without requiring its modification, namely incremental specialization and the interpretive approach, and show that they are equally powerful when the specializer is bti-universal. Since this includes the generation of program specializers from interpreters, the theoretical possibility of bootstrapping powerful specializers is established.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N4441f593b7644d3f95019291b88b350f
    50 Nd4034e09a6a243dd992b2aefb0f8d074
    51 sg:journal.1273809
    52 schema:name An investigation of Jones optimality and BTI-universal specializers
    53 schema:pagination 283
    54 schema:productId N0733e5cc93a74dc2a5ff1d51c244ff88
    55 N1c4982c863ab4edc93f6d70cab689f7a
    56 N788b85020ea44165bd26a9ffd4e63736
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029756061
    58 https://doi.org/10.1007/s10990-008-9033-5
    59 schema:sdDatePublished 2019-04-11T01:07
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N65fe9c4a75e54fada6f6950644a730d6
    62 schema:url http://link.springer.com/10.1007%2Fs10990-008-9033-5
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N0733e5cc93a74dc2a5ff1d51c244ff88 schema:name readcube_id
    67 schema:value 8dc0b7162578abd2c7e5cdd4311af8e0cf00b131867bbc9796514bd5e6d2bc42
    68 rdf:type schema:PropertyValue
    69 N1c4982c863ab4edc93f6d70cab689f7a schema:name dimensions_id
    70 schema:value pub.1029756061
    71 rdf:type schema:PropertyValue
    72 N4441f593b7644d3f95019291b88b350f schema:issueNumber 3
    73 rdf:type schema:PublicationIssue
    74 N65fe9c4a75e54fada6f6950644a730d6 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N788b85020ea44165bd26a9ffd4e63736 schema:name doi
    77 schema:value 10.1007/s10990-008-9033-5
    78 rdf:type schema:PropertyValue
    79 Nd4034e09a6a243dd992b2aefb0f8d074 schema:volumeNumber 21
    80 rdf:type schema:PublicationVolume
    81 Necfe5a200e0b41648b40a58c442f70ad rdf:first sg:person.010754010217.31
    82 rdf:rest rdf:nil
    83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Engineering
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Materials Engineering
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1273809 schema:issn 1388-3690
    90 2212-0793
    91 schema:name Higher-Order and Symbolic Computation
    92 rdf:type schema:Periodical
    93 sg:person.010754010217.31 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
    94 schema:familyName Glück
    95 schema:givenName Robert
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754010217.31
    97 rdf:type schema:Person
    98 sg:pub.10.1007/11924661_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003898112
    99 https://doi.org/10.1007/11924661_25
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/3-540-16446-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000053549
    102 https://doi.org/10.1007/3-540-16446-4_14
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/3-540-36377-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027040707
    105 https://doi.org/10.1007/3-540-36377-7_15
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/3-540-36377-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019023069
    108 https://doi.org/10.1007/3-540-36377-7_16
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/3-540-36575-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033644800
    111 https://doi.org/10.1007/3-540-36575-3_23
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/3-540-44450-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007835
    114 https://doi.org/10.1007/3-540-44450-5_16
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/3-540-44978-7_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031192844
    117 https://doi.org/10.1007/3-540-44978-7_15
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/3-540-45350-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012278693
    120 https://doi.org/10.1007/3-540-45350-4_11
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/3-540-47018-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013466468
    123 https://doi.org/10.1007/3-540-47018-2_2
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/3-540-47018-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038408397
    126 https://doi.org/10.1007/3-540-47018-2_6
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/3-540-57264-3_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003987904
    129 https://doi.org/10.1007/3-540-57264-3_34
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/3-540-58485-4_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007111166
    132 https://doi.org/10.1007/3-540-58485-4_57
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/3-540-61580-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036259674
    135 https://doi.org/10.1007/3-540-61580-6_15
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/3-540-61580-6_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053155927
    138 https://doi.org/10.1007/3-540-61580-6_22
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/3-540-62064-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029529197
    141 https://doi.org/10.1007/3-540-62064-8_24
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/3540543961_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001207932
    144 https://doi.org/10.1007/3540543961_24
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-540-39866-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048960688
    147 https://doi.org/10.1007/978-3-540-39866-0_16
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf01019004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020339008
    150 https://doi.org/10.1007/bf01019004
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bfb0026825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021776056
    153 https://doi.org/10.1007/bfb0026825
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bfb0032064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028626654
    156 https://doi.org/10.1007/bfb0032064
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10990-008-9027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032631334
    159 https://doi.org/10.1007/s10990-008-9027-3
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s10990-008-9030-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023626027
    162 https://doi.org/10.1007/s10990-008-9030-8
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/0020-0190(77)90078-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016252608
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/0020-0190(89)90113-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028126397
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/0304-3975(86)90173-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038643339
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.scico.2004.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029133717
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0020-0190(97)00055-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000980817
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1017/s0956796800000757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016061186
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1017/s0956796800001167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038404271
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1017/s0956796800002008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042426034
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1109/iccl.1994.288382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093265211
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1145/1328408.1328433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032479880
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1145/143165.143220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051821774
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1145/154630.154637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034160022
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1145/215465.215598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010628985
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1145/249069.231419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024696092
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1145/331119.331417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001420988
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1145/568173.568175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001092670
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1145/963778.963784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010449995
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
    199 schema:name DIKU, Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
    200 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...