Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-09-14

AUTHORS

Martin Macek, Martin Kopecký, Jan Wild

ABSTRACT

ContextForest microclimates differ from regional macroclimates because forest canopies affect energy fluxes near the ground. However, little is known about the environmental drivers of understorey temperature heterogeneity and its effects on species assemblages, especially at landscape scales.ObjectivesWe aimed to identify which temperature variables best explain the landscape-scale distribution of forest vegetation and to disentangle the effects of elevation, terrain attributes and canopy cover on understorey temperatures.MethodsWe measured growing season air temperature, canopy cover and plant community composition within 46 plots established across a 400-km2 area in Czech Republic. We linked growing season maximum, mean and minimum temperatures with elevation, canopy cover and topographic proxies for heat load, topographic position, soil moisture and cold air drainage, and created fine-scale topoclimatic maps of the region. We compared the biological relevance of in situ measured temperatures and temperatures derived from fine-scaled topoclimatic maps and global WorldClim 2 maps.ResultsMaximum temperature was the best predictor of understorey plant species composition. Landscape-scale variation in maximum temperature was jointly driven by elevation and terrain topography (Radj.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{adj}}.}}^{2}$$\end{document} = 0.79) but not by canopy cover. Modelled maximum temperature derived from our topoclimatic maps explained significantly more variation in plant community composition than WorldClim 2 grids.ConclusionsTerrain topography creates landscape-scale variation in maximum temperature, which in turn controls plant species assembly within the forest understorey. Maximum temperature is therefore an important but neglected microclimatic driver of species distribution across landscapes. More... »

PAGES

2541-2556

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10980-019-00903-x

DOI

http://dx.doi.org/10.1007/s10980-019-00903-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1121006229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0501", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecological Applications", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Botany, Faculty of Science, Charles University, Ben\u00e1tsk\u00e1 2, 128 01, Prague 2, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "Institute of Botany of the Czech Academy of Sciences, Z\u00e1mek 1, 252 43, Pr\u016fhonice, Czech Republic", 
            "Department of Botany, Faculty of Science, Charles University, Ben\u00e1tsk\u00e1 2, 128 01, Prague 2, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macek", 
        "givenName": "Martin", 
        "id": "sg:person.01235642045.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235642045.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kam\u00fdck\u00e1 129, 165 21, Prague 6 - Suchdol, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.15866.3c", 
          "name": [
            "Institute of Botany of the Czech Academy of Sciences, Z\u00e1mek 1, 252 43, Pr\u016fhonice, Czech Republic", 
            "Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kam\u00fdck\u00e1 129, 165 21, Prague 6 - Suchdol, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kopeck\u00fd", 
        "givenName": "Martin", 
        "id": "sg:person.01324616516.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324616516.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kam\u00fdck\u00e1 129, 165 21, Prague 6 - Suchdol, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.15866.3c", 
          "name": [
            "Institute of Botany of the Czech Academy of Sciences, Z\u00e1mek 1, 252 43, Pr\u016fhonice, Czech Republic", 
            "Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kam\u00fdck\u00e1 129, 165 21, Prague 6 - Suchdol, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wild", 
        "givenName": "Jan", 
        "id": "sg:person.016011377553.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011377553.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-009-9183-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044407870", 
          "https://doi.org/10.1007/978-94-009-9183-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-018-1154-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110226663", 
          "https://doi.org/10.1007/s10342-018-1154-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050012751", 
          "https://doi.org/10.1038/nature10548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009841519580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044665753", 
          "https://doi.org/10.1023/a:1009841519580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-007-9181-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044713376", 
          "https://doi.org/10.1007/s10980-007-9181-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11258-009-9598-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022167689", 
          "https://doi.org/10.1007/s11258-009-9598-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41559-019-0842-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113159275", 
          "https://doi.org/10.1038/s41559-019-0842-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10021-009-9281-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031169520", 
          "https://doi.org/10.1007/s10021-009-9281-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11258-008-9566-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005966705", 
          "https://doi.org/10.1007/s11258-008-9566-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11258-005-9012-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012120157", 
          "https://doi.org/10.1007/s11258-005-9012-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-09-14", 
    "datePublishedReg": "2019-09-14", 
    "description": "ContextForest microclimates differ from regional macroclimates because forest canopies affect energy fluxes near the ground. However, little is known about the environmental drivers of understorey temperature heterogeneity and its effects on species assemblages, especially at landscape scales.ObjectivesWe aimed to identify which temperature variables best explain the landscape-scale distribution of forest vegetation and to disentangle the effects of elevation, terrain attributes and canopy cover on understorey temperatures.MethodsWe measured growing season air temperature, canopy cover and plant community composition within 46 plots established across a 400-km2 area in Czech Republic. We linked growing season maximum, mean and minimum temperatures with elevation, canopy cover and topographic proxies for heat load, topographic position, soil moisture and cold air drainage, and created fine-scale topoclimatic maps of the region. We compared the biological relevance of in situ measured temperatures and temperatures derived from fine-scaled topoclimatic maps and global WorldClim\u00a02\u00a0maps.ResultsMaximum temperature was the best predictor of understorey plant species composition. Landscape-scale variation in maximum temperature was jointly driven by elevation and terrain topography (Radj.2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R_{{{\\text{adj}}.}}^{2}$$\\end{document}\u2009=\u20090.79) but not by canopy cover. Modelled maximum temperature derived from our topoclimatic maps explained significantly more variation in plant community composition than WorldClim\u00a02 grids.ConclusionsTerrain topography creates landscape-scale variation in maximum temperature, which in turn controls plant species assembly within the forest understorey. Maximum temperature is therefore an important but neglected microclimatic driver of species distribution across landscapes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10980-019-00903-x", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7070979", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043738", 
        "issn": [
          "0921-2973", 
          "1572-9761"
        ], 
        "name": "Landscape Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "plant community composition", 
      "landscape-scale variation", 
      "canopy cover", 
      "community composition", 
      "plant species assembly", 
      "landscape-scale distribution", 
      "season air temperature", 
      "effect of elevation", 
      "landscape scale", 
      "species assemblages", 
      "forest vegetation", 
      "species assembly", 
      "microclimatic drivers", 
      "species distribution", 
      "environmental drivers", 
      "understorey temperature", 
      "understorey plants", 
      "temperate forests", 
      "air temperature", 
      "topographic position", 
      "forest understorey", 
      "terrain attributes", 
      "regional macroclimate", 
      "topographic proxies", 
      "cold air drainage", 
      "soil moisture", 
      "forest canopy", 
      "landscape topography", 
      "cover", 
      "season maximum", 
      "maximum air temperature", 
      "more variation", 
      "WorldClim", 
      "temperature variables", 
      "maximum temperature", 
      "air drainage", 
      "terrain topography", 
      "Czech Republic", 
      "minimum temperature", 
      "best predictor", 
      "drivers", 
      "plants", 
      "energy flux", 
      "topography", 
      "composition", 
      "vegetation", 
      "understorey", 
      "macroclimate", 
      "forest", 
      "temperature heterogeneity", 
      "maps", 
      "microclimate", 
      "landscape", 
      "canopy", 
      "assemblages", 
      "elevation", 
      "biological relevance", 
      "ObjectivesWe", 
      "moisture", 
      "plots", 
      "variation", 
      "distribution", 
      "drainage", 
      "proxy", 
      "area", 
      "scale", 
      "flux", 
      "heterogeneity", 
      "ground", 
      "attributes", 
      "MethodsWe", 
      "region", 
      "temperature", 
      "Republic", 
      "effect", 
      "variables", 
      "assembly", 
      "situ", 
      "turn", 
      "predictors", 
      "maximum", 
      "relevance", 
      "load", 
      "grid", 
      "position", 
      "heat load"
    ], 
    "name": "Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests", 
    "pagination": "2541-2556", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1121006229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10980-019-00903-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10980-019-00903-x", 
      "https://app.dimensions.ai/details/publication/pub.1121006229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_795.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10980-019-00903-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10980-019-00903-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10980-019-00903-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10980-019-00903-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10980-019-00903-x'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      122 URIs      102 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10980-019-00903-x schema:about anzsrc-for:05
2 anzsrc-for:0501
3 anzsrc-for:06
4 anzsrc-for:0602
5 schema:author N5d18fd327640425aae98a30b6e7af82d
6 schema:citation sg:pub.10.1007/978-94-009-9183-5_9
7 sg:pub.10.1007/s10021-009-9281-1
8 sg:pub.10.1007/s10342-018-1154-8
9 sg:pub.10.1007/s10980-007-9181-8
10 sg:pub.10.1007/s11258-005-9012-4
11 sg:pub.10.1007/s11258-008-9566-z
12 sg:pub.10.1007/s11258-009-9598-z
13 sg:pub.10.1023/a:1009841519580
14 sg:pub.10.1038/nature10548
15 sg:pub.10.1038/s41559-019-0842-1
16 schema:datePublished 2019-09-14
17 schema:datePublishedReg 2019-09-14
18 schema:description ContextForest microclimates differ from regional macroclimates because forest canopies affect energy fluxes near the ground. However, little is known about the environmental drivers of understorey temperature heterogeneity and its effects on species assemblages, especially at landscape scales.ObjectivesWe aimed to identify which temperature variables best explain the landscape-scale distribution of forest vegetation and to disentangle the effects of elevation, terrain attributes and canopy cover on understorey temperatures.MethodsWe measured growing season air temperature, canopy cover and plant community composition within 46 plots established across a 400-km2 area in Czech Republic. We linked growing season maximum, mean and minimum temperatures with elevation, canopy cover and topographic proxies for heat load, topographic position, soil moisture and cold air drainage, and created fine-scale topoclimatic maps of the region. We compared the biological relevance of in situ measured temperatures and temperatures derived from fine-scaled topoclimatic maps and global WorldClim 2 maps.ResultsMaximum temperature was the best predictor of understorey plant species composition. Landscape-scale variation in maximum temperature was jointly driven by elevation and terrain topography (Radj.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{{{\text{adj}}.}}^{2}$$\end{document} = 0.79) but not by canopy cover. Modelled maximum temperature derived from our topoclimatic maps explained significantly more variation in plant community composition than WorldClim 2 grids.ConclusionsTerrain topography creates landscape-scale variation in maximum temperature, which in turn controls plant species assembly within the forest understorey. Maximum temperature is therefore an important but neglected microclimatic driver of species distribution across landscapes.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N0e039b34829c4979a45b562e5e0b2e42
22 N62d4b46e611f453b97f6f47903728954
23 sg:journal.1043738
24 schema:keywords Czech Republic
25 MethodsWe
26 ObjectivesWe
27 Republic
28 WorldClim
29 air drainage
30 air temperature
31 area
32 assemblages
33 assembly
34 attributes
35 best predictor
36 biological relevance
37 canopy
38 canopy cover
39 cold air drainage
40 community composition
41 composition
42 cover
43 distribution
44 drainage
45 drivers
46 effect
47 effect of elevation
48 elevation
49 energy flux
50 environmental drivers
51 flux
52 forest
53 forest canopy
54 forest understorey
55 forest vegetation
56 grid
57 ground
58 heat load
59 heterogeneity
60 landscape
61 landscape scale
62 landscape topography
63 landscape-scale distribution
64 landscape-scale variation
65 load
66 macroclimate
67 maps
68 maximum
69 maximum air temperature
70 maximum temperature
71 microclimate
72 microclimatic drivers
73 minimum temperature
74 moisture
75 more variation
76 plant community composition
77 plant species assembly
78 plants
79 plots
80 position
81 predictors
82 proxy
83 region
84 regional macroclimate
85 relevance
86 scale
87 season air temperature
88 season maximum
89 situ
90 soil moisture
91 species assemblages
92 species assembly
93 species distribution
94 temperate forests
95 temperature
96 temperature heterogeneity
97 temperature variables
98 terrain attributes
99 terrain topography
100 topographic position
101 topographic proxies
102 topography
103 turn
104 understorey
105 understorey plants
106 understorey temperature
107 variables
108 variation
109 vegetation
110 schema:name Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests
111 schema:pagination 2541-2556
112 schema:productId N645bfb4c43d047bfb7551b07f98a025c
113 N69b7518985e54c2ba24a0798c1554d4e
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121006229
115 https://doi.org/10.1007/s10980-019-00903-x
116 schema:sdDatePublished 2022-10-01T06:45
117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
118 schema:sdPublisher N4f5a0c3abc504c80a5c818f715e7d3ea
119 schema:url https://doi.org/10.1007/s10980-019-00903-x
120 sgo:license sg:explorer/license/
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N07211978d9034184809e91c1e02d7cfe rdf:first sg:person.016011377553.21
124 rdf:rest rdf:nil
125 N0e039b34829c4979a45b562e5e0b2e42 schema:volumeNumber 34
126 rdf:type schema:PublicationVolume
127 N4f5a0c3abc504c80a5c818f715e7d3ea schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N5d18fd327640425aae98a30b6e7af82d rdf:first sg:person.01235642045.41
130 rdf:rest Nfdb6849cefdf44a7994d5ea99bccb57a
131 N62d4b46e611f453b97f6f47903728954 schema:issueNumber 11
132 rdf:type schema:PublicationIssue
133 N645bfb4c43d047bfb7551b07f98a025c schema:name doi
134 schema:value 10.1007/s10980-019-00903-x
135 rdf:type schema:PropertyValue
136 N69b7518985e54c2ba24a0798c1554d4e schema:name dimensions_id
137 schema:value pub.1121006229
138 rdf:type schema:PropertyValue
139 Nfdb6849cefdf44a7994d5ea99bccb57a rdf:first sg:person.01324616516.67
140 rdf:rest N07211978d9034184809e91c1e02d7cfe
141 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
142 schema:name Environmental Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0501 schema:inDefinedTermSet anzsrc-for:
145 schema:name Ecological Applications
146 rdf:type schema:DefinedTerm
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
151 schema:name Ecology
152 rdf:type schema:DefinedTerm
153 sg:grant.7070979 http://pending.schema.org/fundedItem sg:pub.10.1007/s10980-019-00903-x
154 rdf:type schema:MonetaryGrant
155 sg:journal.1043738 schema:issn 0921-2973
156 1572-9761
157 schema:name Landscape Ecology
158 schema:publisher Springer Nature
159 rdf:type schema:Periodical
160 sg:person.01235642045.41 schema:affiliation grid-institutes:grid.4491.8
161 schema:familyName Macek
162 schema:givenName Martin
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235642045.41
164 rdf:type schema:Person
165 sg:person.01324616516.67 schema:affiliation grid-institutes:grid.15866.3c
166 schema:familyName Kopecký
167 schema:givenName Martin
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324616516.67
169 rdf:type schema:Person
170 sg:person.016011377553.21 schema:affiliation grid-institutes:grid.15866.3c
171 schema:familyName Wild
172 schema:givenName Jan
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016011377553.21
174 rdf:type schema:Person
175 sg:pub.10.1007/978-94-009-9183-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044407870
176 https://doi.org/10.1007/978-94-009-9183-5_9
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10021-009-9281-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031169520
179 https://doi.org/10.1007/s10021-009-9281-1
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10342-018-1154-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110226663
182 https://doi.org/10.1007/s10342-018-1154-8
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10980-007-9181-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044713376
185 https://doi.org/10.1007/s10980-007-9181-8
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s11258-005-9012-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012120157
188 https://doi.org/10.1007/s11258-005-9012-4
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11258-008-9566-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005966705
191 https://doi.org/10.1007/s11258-008-9566-z
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11258-009-9598-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022167689
194 https://doi.org/10.1007/s11258-009-9598-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1023/a:1009841519580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665753
197 https://doi.org/10.1023/a:1009841519580
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature10548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050012751
200 https://doi.org/10.1038/nature10548
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/s41559-019-0842-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113159275
203 https://doi.org/10.1038/s41559-019-0842-1
204 rdf:type schema:CreativeWork
205 grid-institutes:grid.15866.3c schema:alternateName Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
206 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
207 schema:name Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
208 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague 6 - Suchdol, Czech Republic
209 Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
210 rdf:type schema:Organization
211 grid-institutes:grid.4491.8 schema:alternateName Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
212 schema:name Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague 2, Czech Republic
213 Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...