Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07-20

AUTHORS

Lixin Wang, Gregory S. Okin, Paolo D’Odorico, Kelly K. Caylor, Stephen A. Macko

ABSTRACT

Soil 15N is a natural tracer of nitrogen (N) cycling. Its spatial distribution is a good indicator of processes that are critical to N cycling and of their controlling factors integrated both in time and space. The spatial distribution of soil δ15N and its underlying drivers at sub-kilometer scales are rarely investigated. This study utilizes two sites (dry vs. wet) from a megatransect in southern Africa encompassing locations with similar soil substrate but different rainfall and vegetation, to explore the effects of soil moisture and vegetation distribution on ecosystem-scale patterns of soil δ15N. A 300-m long transect was set up at each site and surface soil samples were randomly collected for analyses of δ15N, %N and nitrate content. At each soil sampling location the presence of grasses, woody plants, Acacia species (potential N fixer) as well as soil moisture levels were recorded. A spatial pattern of soil δ15N existed at the dry site, but not at the wet site. Woody cover distribution determined the soil δ15N spatial pattern at ecosystem-scale; however, the two Acacia species did not contribute to the spatial pattern of soil δ15N. Grass cover was negatively correlated with soil δ15N at both sites owing to the lower foliar δ15N values of grasses. Soil moisture did not play a role in the spatial pattern of soil δ15N at either site. These results suggest that vegetation distribution, directly, and water availability, indirectly, affect the spatial patterns of soil δ15N through their effects on woody plant and grass distributions. More... »

PAGES

685-698

References to SciGraph publications

  • 1993-06. A break in the nitrogen cycle in aridlands? Evidence from δp15N of soils in OECOLOGIA
  • 2006-07. Soil Properties and their Spatial Pattern in a Degraded Sandy Grassland under Post-grazing Restoration, Inner Mongolia, Northern China in BIOGEOCHEMISTRY
  • 2009-07-04. Combined effects of soil moisture and nitrogen availability variations on grass productivity in African savannas in PLANT AND SOIL
  • 2007-05-10. Spatial heterogeneity of soil nitrogen in a subtropical forest in China in PLANT AND SOIL
  • 2004-02-24. Water pulses and biogeochemical cycles in arid and semiarid ecosystems in OECOLOGIA
  • 2009-02-17. Soil carbon and nitrogen dynamics in southern African savannas: the effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients in CLIMATIC CHANGE
  • 1991-11. Estimates of nitrogen fixation by trees on an aridity gradient in Namibia in OECOLOGIA
  • 2008-12-16. Spatial variation of the stable nitrogen isotope ratio of woody plants along a topoedaphic gradient in a subtropical savanna in OECOLOGIA
  • 2009-11-05. Remote Sensing of Nitrogen and Carbon Isotope Compositions in Terrestrial Ecosystems in ISOSCAPES
  • 1990-11. Natural 15N abundance in shrub and tree legumes, Casuarina, and non N2 fixing plants in Thailand in PLANT AND SOIL
  • 2001-05. Variance–Covariance Matrix of the Experimental Variogram: Assessing Variogram Uncertainty in MATHEMATICAL GEOSCIENCES
  • 2008-03-19. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities in BIOGEOCHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10980-012-9776-6

    DOI

    http://dx.doi.org/10.1007/s10980-012-9776-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051413196


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, 2052, Sydney, NSW, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "Department of Earth Sciences, Indiana University-Purdue University, Indianapolis (IUPUI), 46202, Indianapolis, IN, USA", 
                "Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, 2052, Sydney, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Lixin", 
            "id": "sg:person.07657600433.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657600433.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, 90095, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, 90095, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okin", 
            "givenName": "Gregory S.", 
            "id": "sg:person.01037116461.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037116461.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "D\u2019Odorico", 
            "givenName": "Paolo", 
            "id": "sg:person.0623677463.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623677463.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil and Environmental Engineering, Princeton University, 08544, Princeton, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Department of Civil and Environmental Engineering, Princeton University, 08544, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Caylor", 
            "givenName": "Kelly K.", 
            "id": "sg:person.0771003261.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771003261.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Macko", 
            "givenName": "Stephen A.", 
            "id": "sg:person.013256350705.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256350705.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00011121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013169469", 
              "https://doi.org/10.1007/bf00011121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-009-0085-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052962285", 
              "https://doi.org/10.1007/s11104-009-0085-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1011097228254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034893345", 
              "https://doi.org/10.1023/a:1011097228254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-3354-3_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011605403", 
              "https://doi.org/10.1007/978-90-481-3354-3_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10533-005-5273-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031296792", 
              "https://doi.org/10.1007/s10533-005-5273-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015341204", 
              "https://doi.org/10.1007/bf00317592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-008-1246-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013312371", 
              "https://doi.org/10.1007/s00442-008-1246-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-007-9271-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027983605", 
              "https://doi.org/10.1007/s11104-007-9271-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00317104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041198524", 
              "https://doi.org/10.1007/bf00317104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9548-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022961090", 
              "https://doi.org/10.1007/s10584-009-9548-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00442-004-1519-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029021403", 
              "https://doi.org/10.1007/s00442-004-1519-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10533-008-9195-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034379720", 
              "https://doi.org/10.1007/s10533-008-9195-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07-20", 
        "datePublishedReg": "2012-07-20", 
        "description": "Soil 15N is a natural tracer of nitrogen (N) cycling. Its spatial distribution is a good indicator of processes that are critical to N cycling and of their controlling factors integrated both in time and space. The spatial distribution of soil \u03b415N and its underlying drivers at sub-kilometer scales are rarely investigated. This study utilizes two sites (dry vs. wet) from a megatransect in southern Africa encompassing locations with similar soil substrate but different rainfall and vegetation, to explore the effects of soil moisture and vegetation distribution on ecosystem-scale patterns of soil \u03b415N. A 300-m long transect was set up at each site and surface soil samples were randomly collected for analyses of \u03b415N, %N and nitrate content. At each soil sampling location the presence of grasses, woody plants, Acacia species (potential N fixer) as well as soil moisture levels were recorded. A spatial pattern of soil \u03b415N existed at the dry site, but not at the wet site. Woody cover distribution determined the soil \u03b415N spatial pattern at ecosystem-scale; however, the two Acacia species did not contribute to the spatial pattern of soil \u03b415N. Grass cover was negatively correlated with soil \u03b415N at both sites owing to the lower foliar \u03b415N values of grasses. Soil moisture did not play a role in the spatial pattern of soil \u03b415N at either site. These results suggest that vegetation distribution, directly, and water availability, indirectly, affect the spatial patterns of soil \u03b415N through their effects on woody plant and grass distributions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10980-012-9776-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043738", 
            "issn": [
              "0921-2973", 
              "1572-9761"
            ], 
            "name": "Landscape Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "keywords": [
          "soil \u03b415N", 
          "spatial patterns", 
          "soil \u03b415N.", 
          "vegetation distribution", 
          "Acacia species", 
          "woody plants", 
          "soil moisture", 
          "foliar \u03b415N values", 
          "surface soil samples", 
          "spatial distribution", 
          "analysis of \u03b415N", 
          "presence of grasses", 
          "soil moisture levels", 
          "sub-kilometer scales", 
          "N cycling", 
          "grass cover", 
          "soil nitrogen", 
          "African savannas", 
          "soil 15N", 
          "nitrogen cycling", 
          "grass distribution", 
          "soil samples", 
          "soil substrate", 
          "wet sites", 
          "\u03b415N values", 
          "dry sites", 
          "long transect", 
          "water availability", 
          "\u03b415N", 
          "spatial heterogeneity", 
          "stable isotopes", 
          "natural tracers", 
          "different rainfall", 
          "nitrate content", 
          "moisture levels", 
          "\u03b415N.", 
          "southern Africa", 
          "good indicator", 
          "grass", 
          "cycling", 
          "moisture", 
          "species", 
          "sites", 
          "plants", 
          "megatransect", 
          "savanna", 
          "vegetation", 
          "woody", 
          "soil", 
          "transects", 
          "cover", 
          "distribution", 
          "patterns", 
          "rainfall", 
          "isotopes", 
          "nitrogen", 
          "drivers", 
          "tracer", 
          "location", 
          "availability", 
          "indicators", 
          "Africa", 
          "scale", 
          "heterogeneity", 
          "content", 
          "effect", 
          "samples", 
          "role", 
          "substrate", 
          "factors", 
          "values", 
          "process", 
          "levels", 
          "study", 
          "time", 
          "results", 
          "space", 
          "analysis", 
          "presence"
        ], 
        "name": "Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas", 
        "pagination": "685-698", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051413196"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10980-012-9776-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10980-012-9776-6", 
          "https://app.dimensions.ai/details/publication/pub.1051413196"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10980-012-9776-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10980-012-9776-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10980-012-9776-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10980-012-9776-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10980-012-9776-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    238 TRIPLES      21 PREDICATES      119 URIs      95 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10980-012-9776-6 schema:about anzsrc-for:05
    2 anzsrc-for:0502
    3 anzsrc-for:0503
    4 anzsrc-for:06
    5 anzsrc-for:0602
    6 anzsrc-for:0607
    7 schema:author N178c42518d36457c8f9c361480e100c4
    8 schema:citation sg:pub.10.1007/978-90-481-3354-3_3
    9 sg:pub.10.1007/bf00011121
    10 sg:pub.10.1007/bf00317104
    11 sg:pub.10.1007/bf00317592
    12 sg:pub.10.1007/s00442-004-1519-1
    13 sg:pub.10.1007/s00442-008-1246-0
    14 sg:pub.10.1007/s10533-005-5273-1
    15 sg:pub.10.1007/s10533-008-9195-6
    16 sg:pub.10.1007/s10584-009-9548-8
    17 sg:pub.10.1007/s11104-007-9271-z
    18 sg:pub.10.1007/s11104-009-0085-z
    19 sg:pub.10.1023/a:1011097228254
    20 schema:datePublished 2012-07-20
    21 schema:datePublishedReg 2012-07-20
    22 schema:description Soil 15N is a natural tracer of nitrogen (N) cycling. Its spatial distribution is a good indicator of processes that are critical to N cycling and of their controlling factors integrated both in time and space. The spatial distribution of soil δ15N and its underlying drivers at sub-kilometer scales are rarely investigated. This study utilizes two sites (dry vs. wet) from a megatransect in southern Africa encompassing locations with similar soil substrate but different rainfall and vegetation, to explore the effects of soil moisture and vegetation distribution on ecosystem-scale patterns of soil δ15N. A 300-m long transect was set up at each site and surface soil samples were randomly collected for analyses of δ15N, %N and nitrate content. At each soil sampling location the presence of grasses, woody plants, Acacia species (potential N fixer) as well as soil moisture levels were recorded. A spatial pattern of soil δ15N existed at the dry site, but not at the wet site. Woody cover distribution determined the soil δ15N spatial pattern at ecosystem-scale; however, the two Acacia species did not contribute to the spatial pattern of soil δ15N. Grass cover was negatively correlated with soil δ15N at both sites owing to the lower foliar δ15N values of grasses. Soil moisture did not play a role in the spatial pattern of soil δ15N at either site. These results suggest that vegetation distribution, directly, and water availability, indirectly, affect the spatial patterns of soil δ15N through their effects on woody plant and grass distributions.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N91ac1ba6f0c1435b9e8c3228daa13ebb
    26 Ncd9e28ecbb524861a2fe5ad408a2bf06
    27 sg:journal.1043738
    28 schema:keywords Acacia species
    29 Africa
    30 African savannas
    31 N cycling
    32 analysis
    33 analysis of δ15N
    34 availability
    35 content
    36 cover
    37 cycling
    38 different rainfall
    39 distribution
    40 drivers
    41 dry sites
    42 effect
    43 factors
    44 foliar δ15N values
    45 good indicator
    46 grass
    47 grass cover
    48 grass distribution
    49 heterogeneity
    50 indicators
    51 isotopes
    52 levels
    53 location
    54 long transect
    55 megatransect
    56 moisture
    57 moisture levels
    58 natural tracers
    59 nitrate content
    60 nitrogen
    61 nitrogen cycling
    62 patterns
    63 plants
    64 presence
    65 presence of grasses
    66 process
    67 rainfall
    68 results
    69 role
    70 samples
    71 savanna
    72 scale
    73 sites
    74 soil
    75 soil 15N
    76 soil moisture
    77 soil moisture levels
    78 soil nitrogen
    79 soil samples
    80 soil substrate
    81 soil δ15N
    82 soil δ15N.
    83 southern Africa
    84 space
    85 spatial distribution
    86 spatial heterogeneity
    87 spatial patterns
    88 species
    89 stable isotopes
    90 study
    91 sub-kilometer scales
    92 substrate
    93 surface soil samples
    94 time
    95 tracer
    96 transects
    97 values
    98 vegetation
    99 vegetation distribution
    100 water availability
    101 wet sites
    102 woody
    103 woody plants
    104 δ15N
    105 δ15N values
    106 δ15N.
    107 schema:name Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas
    108 schema:pagination 685-698
    109 schema:productId Na71812ab4c264f51800964445049c923
    110 Nd30e72c5c8d44049b8436254ec9895f7
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051413196
    112 https://doi.org/10.1007/s10980-012-9776-6
    113 schema:sdDatePublished 2022-11-24T20:56
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N39a0e4af62054c90b7a17d62dce492b1
    116 schema:url https://doi.org/10.1007/s10980-012-9776-6
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N0d2a242ae5ce4ef18471e4148ec810ba rdf:first sg:person.0771003261.98
    121 rdf:rest Nf552389c71be4ec5849851c6d7305e03
    122 N178c42518d36457c8f9c361480e100c4 rdf:first sg:person.07657600433.83
    123 rdf:rest N578f49eea8d94963992cea37b0243e69
    124 N39a0e4af62054c90b7a17d62dce492b1 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N578f49eea8d94963992cea37b0243e69 rdf:first sg:person.01037116461.54
    127 rdf:rest N6ea9d261545f45ee9356b589c0498d37
    128 N6ea9d261545f45ee9356b589c0498d37 rdf:first sg:person.0623677463.60
    129 rdf:rest N0d2a242ae5ce4ef18471e4148ec810ba
    130 N91ac1ba6f0c1435b9e8c3228daa13ebb schema:volumeNumber 28
    131 rdf:type schema:PublicationVolume
    132 Na71812ab4c264f51800964445049c923 schema:name doi
    133 schema:value 10.1007/s10980-012-9776-6
    134 rdf:type schema:PropertyValue
    135 Ncd9e28ecbb524861a2fe5ad408a2bf06 schema:issueNumber 4
    136 rdf:type schema:PublicationIssue
    137 Nd30e72c5c8d44049b8436254ec9895f7 schema:name dimensions_id
    138 schema:value pub.1051413196
    139 rdf:type schema:PropertyValue
    140 Nf552389c71be4ec5849851c6d7305e03 rdf:first sg:person.013256350705.53
    141 rdf:rest rdf:nil
    142 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Environmental Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Environmental Science and Management
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Soil Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Ecology
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Plant Biology
    159 rdf:type schema:DefinedTerm
    160 sg:journal.1043738 schema:issn 0921-2973
    161 1572-9761
    162 schema:name Landscape Ecology
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.01037116461.54 schema:affiliation grid-institutes:grid.19006.3e
    166 schema:familyName Okin
    167 schema:givenName Gregory S.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037116461.54
    169 rdf:type schema:Person
    170 sg:person.013256350705.53 schema:affiliation grid-institutes:grid.27755.32
    171 schema:familyName Macko
    172 schema:givenName Stephen A.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013256350705.53
    174 rdf:type schema:Person
    175 sg:person.0623677463.60 schema:affiliation grid-institutes:grid.27755.32
    176 schema:familyName D’Odorico
    177 schema:givenName Paolo
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623677463.60
    179 rdf:type schema:Person
    180 sg:person.07657600433.83 schema:affiliation grid-institutes:grid.1005.4
    181 schema:familyName Wang
    182 schema:givenName Lixin
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657600433.83
    184 rdf:type schema:Person
    185 sg:person.0771003261.98 schema:affiliation grid-institutes:grid.16750.35
    186 schema:familyName Caylor
    187 schema:givenName Kelly K.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771003261.98
    189 rdf:type schema:Person
    190 sg:pub.10.1007/978-90-481-3354-3_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011605403
    191 https://doi.org/10.1007/978-90-481-3354-3_3
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf00011121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013169469
    194 https://doi.org/10.1007/bf00011121
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf00317104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041198524
    197 https://doi.org/10.1007/bf00317104
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/bf00317592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015341204
    200 https://doi.org/10.1007/bf00317592
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00442-004-1519-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029021403
    203 https://doi.org/10.1007/s00442-004-1519-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00442-008-1246-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013312371
    206 https://doi.org/10.1007/s00442-008-1246-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s10533-005-5273-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031296792
    209 https://doi.org/10.1007/s10533-005-5273-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s10533-008-9195-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034379720
    212 https://doi.org/10.1007/s10533-008-9195-6
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s10584-009-9548-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961090
    215 https://doi.org/10.1007/s10584-009-9548-8
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s11104-007-9271-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027983605
    218 https://doi.org/10.1007/s11104-007-9271-z
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s11104-009-0085-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052962285
    221 https://doi.org/10.1007/s11104-009-0085-z
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1023/a:1011097228254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034893345
    224 https://doi.org/10.1023/a:1011097228254
    225 rdf:type schema:CreativeWork
    226 grid-institutes:grid.1005.4 schema:alternateName Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, 2052, Sydney, NSW, Australia
    227 schema:name Department of Earth Sciences, Indiana University-Purdue University, Indianapolis (IUPUI), 46202, Indianapolis, IN, USA
    228 Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, 2052, Sydney, NSW, Australia
    229 rdf:type schema:Organization
    230 grid-institutes:grid.16750.35 schema:alternateName Department of Civil and Environmental Engineering, Princeton University, 08544, Princeton, NJ, USA
    231 schema:name Department of Civil and Environmental Engineering, Princeton University, 08544, Princeton, NJ, USA
    232 rdf:type schema:Organization
    233 grid-institutes:grid.19006.3e schema:alternateName Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, 90095, Los Angeles, CA, USA
    234 schema:name Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, 90095, Los Angeles, CA, USA
    235 rdf:type schema:Organization
    236 grid-institutes:grid.27755.32 schema:alternateName Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA
    237 schema:name Department of Environmental Sciences, University of Virginia, 22904, Charlottesville, VA, USA
    238 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...