Do coarse resolution U.S. presettlement land survey records adequately represent the spatial pattern of individual tree species? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10

AUTHORS

Yi-Chen Wang, Chris P. S. Larsen

ABSTRACT

Presettlement land survey records (PLSRs) are a valuable and unique source of information for the reconstruction of presettlement forest patterns. The purpose of this study was to determine whether coarsely resolved PLSRs are adequate to characterize the spatial patterns of individual tree species over large areas. The General Land Office Survey records of the PLSRs of Minnesota were used and species selected in the analysis were based on their abundances and degrees of clustering. A geostatistical procedure was developed to analyze observations of bearing-tree point-locations, at progressively coarser resolutions from 1×1 mile to 24×24 miles, to create spatially continuous probability surfaces of species occurrences across the landscape. Statistical and visual analyses of the geostatistical predictions indicated that coarsely resolved PLSRs, as coarse as 24×24 miles, can adequately represent the spatial pattern of individual species over large areas. Mean errors in predictions increased as more coarsely resolved data were used, primarily in response to the decreased abundance of a species and minorly in response to the degree of spatial clustering of a species. The results indicate that coarsely resolved township-level data of 6×6 miles can be used for presettlement vegetation reconstruction of large areas of several counties. More... »

PAGES

1003-1017

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10980-005-6221-0

DOI

http://dx.doi.org/10.1007/s10980-005-6221-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017037849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "Department of Geography, University at Buffalo, The State University of New York, Buffalo, 14261, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yi-Chen", 
        "id": "sg:person.01227455154.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227455154.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University at Buffalo, State University of New York", 
          "id": "https://www.grid.ac/institutes/grid.273335.3", 
          "name": [
            "Department of Geography, University at Buffalo, The State University of New York, Buffalo, 14261, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsen", 
        "givenName": "Chris P. S.", 
        "id": "sg:person.014134166277.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134166277.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/x99-242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/136588198241914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000814819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009796502293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143120", 
          "https://doi.org/10.1023/a:1009796502293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-4065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005230209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:land.0000021711.40074.ae", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008929078", 
          "https://doi.org/10.1023/b:land.0000021711.40074.ae"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.1999.00292.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8306.1995.tb01795.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011183749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649321", 
          "https://doi.org/10.1007/bf00131534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00131534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012649321", 
          "https://doi.org/10.1007/bf00131534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017079291", 
          "https://doi.org/10.1007/bf02447512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017079291", 
          "https://doi.org/10.1007/bf02447512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023500708", 
          "https://doi.org/10.1007/bf02447523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02447523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023500708", 
          "https://doi.org/10.1007/bf02447523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2002.00757.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025555238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008115200471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028770745", 
          "https://doi.org/10.1023/a:1008115200471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2937096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029024001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1526-100x.2004.00285.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030643810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x02-082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034568455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-5894(73)90003-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037781256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.2000.00444.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039020632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020561630963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389895", 
          "https://doi.org/10.1023/a:1020561630963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2699.1997.00148.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040599521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x01-111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046080220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02087112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354971", 
          "https://doi.org/10.1007/bf02087112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02087112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053354971", 
          "https://doi.org/10.1007/bf02087112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133305pp463ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064152052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133305pp463ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064152052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1931034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069655524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1935115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069659271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2260864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069853990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2423919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069926722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2426297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069928907"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "Presettlement land survey records (PLSRs) are a valuable and unique source of information for the reconstruction of presettlement forest patterns. The purpose of this study was to determine whether coarsely resolved PLSRs are adequate to characterize the spatial patterns of individual tree species over large areas. The General Land Office Survey records of the PLSRs of Minnesota were used and species selected in the analysis were based on their abundances and degrees of clustering. A geostatistical procedure was developed to analyze observations of bearing-tree point-locations, at progressively coarser resolutions from 1\u00d71 mile to 24\u00d724 miles, to create spatially continuous probability surfaces of species occurrences across the landscape. Statistical and visual analyses of the geostatistical predictions indicated that coarsely resolved PLSRs, as coarse as 24\u00d724 miles, can adequately represent the spatial pattern of individual species over large areas. Mean errors in predictions increased as more coarsely resolved data were used, primarily in response to the decreased abundance of a species and minorly in response to the degree of spatial clustering of a species. The results indicate that coarsely resolved township-level data of 6\u00d76 miles can be used for presettlement vegetation reconstruction of large areas of several counties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10980-005-6221-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043738", 
        "issn": [
          "0921-2973", 
          "1572-9761"
        ], 
        "name": "Landscape Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Do coarse resolution U.S. presettlement land survey records adequately represent the spatial pattern of individual tree species?", 
    "pagination": "1003-1017", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "512ccae8f3e9d3dafa86f6f18655548e65899a76e65c7691fa36d99c30ca28f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10980-005-6221-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017037849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10980-005-6221-0", 
      "https://app.dimensions.ai/details/publication/pub.1017037849"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10980-005-6221-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-6221-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-6221-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-6221-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-6221-0'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10980-005-6221-0 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 schema:author Na580c2163e1d402c9fe3db469fc5c0df
4 schema:citation sg:pub.10.1007/bf00131534
5 sg:pub.10.1007/bf02087112
6 sg:pub.10.1007/bf02447512
7 sg:pub.10.1007/bf02447523
8 sg:pub.10.1023/a:1008115200471
9 sg:pub.10.1023/a:1009796502293
10 sg:pub.10.1023/a:1020561630963
11 sg:pub.10.1023/b:land.0000021711.40074.ae
12 https://doi.org/10.1016/0033-5894(73)90003-3
13 https://doi.org/10.1046/j.1365-2699.1997.00148.x
14 https://doi.org/10.1046/j.1365-2699.1999.00292.x
15 https://doi.org/10.1046/j.1365-2699.2000.00444.x
16 https://doi.org/10.1046/j.1365-2699.2002.00757.x
17 https://doi.org/10.1080/136588198241914
18 https://doi.org/10.1111/j.1467-8306.1995.tb01795.x
19 https://doi.org/10.1111/j.1526-100x.2004.00285.x
20 https://doi.org/10.1139/x01-111
21 https://doi.org/10.1139/x02-082
22 https://doi.org/10.1139/x99-242
23 https://doi.org/10.1191/0309133305pp463ra
24 https://doi.org/10.1890/03-4065
25 https://doi.org/10.2307/1931034
26 https://doi.org/10.2307/1935115
27 https://doi.org/10.2307/2260864
28 https://doi.org/10.2307/2423919
29 https://doi.org/10.2307/2426297
30 https://doi.org/10.2307/2937096
31 schema:datePublished 2006-10
32 schema:datePublishedReg 2006-10-01
33 schema:description Presettlement land survey records (PLSRs) are a valuable and unique source of information for the reconstruction of presettlement forest patterns. The purpose of this study was to determine whether coarsely resolved PLSRs are adequate to characterize the spatial patterns of individual tree species over large areas. The General Land Office Survey records of the PLSRs of Minnesota were used and species selected in the analysis were based on their abundances and degrees of clustering. A geostatistical procedure was developed to analyze observations of bearing-tree point-locations, at progressively coarser resolutions from 1×1 mile to 24×24 miles, to create spatially continuous probability surfaces of species occurrences across the landscape. Statistical and visual analyses of the geostatistical predictions indicated that coarsely resolved PLSRs, as coarse as 24×24 miles, can adequately represent the spatial pattern of individual species over large areas. Mean errors in predictions increased as more coarsely resolved data were used, primarily in response to the decreased abundance of a species and minorly in response to the degree of spatial clustering of a species. The results indicate that coarsely resolved township-level data of 6×6 miles can be used for presettlement vegetation reconstruction of large areas of several counties.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N176f1b7251484f7a935e7a969223e57a
38 N6c8e9f930c8040deb4d11beaa6e9b520
39 sg:journal.1043738
40 schema:name Do coarse resolution U.S. presettlement land survey records adequately represent the spatial pattern of individual tree species?
41 schema:pagination 1003-1017
42 schema:productId N26882391aecd4d9b875569af5a5518e5
43 N4b912001c6e54bb0a6a6800c707917d4
44 Nf29275280d274bef81268f94b27b8fd5
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017037849
46 https://doi.org/10.1007/s10980-005-6221-0
47 schema:sdDatePublished 2019-04-11T02:00
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N59bf28624b1641f3845594975f0c33ff
50 schema:url http://link.springer.com/10.1007%2Fs10980-005-6221-0
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N176f1b7251484f7a935e7a969223e57a schema:issueNumber 7
55 rdf:type schema:PublicationIssue
56 N26882391aecd4d9b875569af5a5518e5 schema:name dimensions_id
57 schema:value pub.1017037849
58 rdf:type schema:PropertyValue
59 N4b912001c6e54bb0a6a6800c707917d4 schema:name doi
60 schema:value 10.1007/s10980-005-6221-0
61 rdf:type schema:PropertyValue
62 N59bf28624b1641f3845594975f0c33ff schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N5c49f61b0a4e424597cc20ee4c6a4a94 rdf:first sg:person.014134166277.43
65 rdf:rest rdf:nil
66 N6c8e9f930c8040deb4d11beaa6e9b520 schema:volumeNumber 21
67 rdf:type schema:PublicationVolume
68 Na580c2163e1d402c9fe3db469fc5c0df rdf:first sg:person.01227455154.77
69 rdf:rest N5c49f61b0a4e424597cc20ee4c6a4a94
70 Nf29275280d274bef81268f94b27b8fd5 schema:name readcube_id
71 schema:value 512ccae8f3e9d3dafa86f6f18655548e65899a76e65c7691fa36d99c30ca28f2
72 rdf:type schema:PropertyValue
73 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
74 schema:name Environmental Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
77 schema:name Environmental Science and Management
78 rdf:type schema:DefinedTerm
79 sg:journal.1043738 schema:issn 0921-2973
80 1572-9761
81 schema:name Landscape Ecology
82 rdf:type schema:Periodical
83 sg:person.01227455154.77 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
84 schema:familyName Wang
85 schema:givenName Yi-Chen
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227455154.77
87 rdf:type schema:Person
88 sg:person.014134166277.43 schema:affiliation https://www.grid.ac/institutes/grid.273335.3
89 schema:familyName Larsen
90 schema:givenName Chris P. S.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134166277.43
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00131534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649321
94 https://doi.org/10.1007/bf00131534
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02087112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053354971
97 https://doi.org/10.1007/bf02087112
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02447512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017079291
100 https://doi.org/10.1007/bf02447512
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02447523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023500708
103 https://doi.org/10.1007/bf02447523
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1008115200471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028770745
106 https://doi.org/10.1023/a:1008115200471
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1009796502293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143120
109 https://doi.org/10.1023/a:1009796502293
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1020561630963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389895
112 https://doi.org/10.1023/a:1020561630963
113 rdf:type schema:CreativeWork
114 sg:pub.10.1023/b:land.0000021711.40074.ae schema:sameAs https://app.dimensions.ai/details/publication/pub.1008929078
115 https://doi.org/10.1023/b:land.0000021711.40074.ae
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0033-5894(73)90003-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037781256
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1046/j.1365-2699.1997.00148.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040599521
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1046/j.1365-2699.1999.00292.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010900734
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1046/j.1365-2699.2000.00444.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039020632
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1046/j.1365-2699.2002.00757.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025555238
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/136588198241914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000814819
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1467-8306.1995.tb01795.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011183749
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.1526-100x.2004.00285.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030643810
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1139/x01-111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046080220
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1139/x02-082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034568455
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1139/x99-242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572283
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1191/0309133305pp463ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064152052
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1890/03-4065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005230209
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2307/1931034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069655524
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/1935115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069659271
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2307/2260864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069853990
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2307/2423919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069926722
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2307/2426297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069928907
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2307/2937096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024001
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.273335.3 schema:alternateName University at Buffalo, State University of New York
156 schema:name Department of Geography, University at Buffalo, The State University of New York, Buffalo, 14261, NY, USA
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...