Adaptive vs. neutral genetic diversity: implications for landscape genetics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-08

AUTHORS

Rolf Holderegger, Urs Kamm, Felix Gugerli

ABSTRACT

Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies. More... »

PAGES

797-807

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9

DOI

http://dx.doi.org/10.1007/s10980-005-5245-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009847065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holderegger", 
        "givenName": "Rolf", 
        "id": "sg:person.01014057420.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environmental Sciences, ETH Z\u00fcrich Zentrum, R\u00e4mistrasse 101, CH-8092, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland", 
            "Department of Environmental Sciences, ETH Z\u00fcrich Zentrum, R\u00e4mistrasse 101, CH-8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamm", 
        "givenName": "Urs", 
        "id": "sg:person.0730167015.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730167015.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gugerli", 
        "givenName": "Felix", 
        "id": "sg:person.0610705622.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10980-005-5220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037468", 
          "https://doi.org/10.1007/s10980-005-5220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:land.0000030441.15628.d6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852402", 
          "https://doi.org/10.1023/b:land.0000030441.15628.d6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5567-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031485243", 
          "https://doi.org/10.1007/s10980-005-5567-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-7756-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037131595", 
          "https://doi.org/10.1007/s10980-005-7756-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5389-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018914248", 
          "https://doi.org/10.1007/s10980-005-5389-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5415-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007907493", 
          "https://doi.org/10.1007/s10980-005-5415-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020561630963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389895", 
          "https://doi.org/10.1023/a:1020561630963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-003-1863-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020104884", 
          "https://doi.org/10.1007/s10592-003-1863-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08", 
    "datePublishedReg": "2006-08-01", 
    "description": "Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral \u2013 a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10980-005-5245-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043738", 
        "issn": [
          "0921-2973", 
          "1572-9761"
        ], 
        "name": "Landscape Ecology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "adaptive genetic variation", 
      "neutral genetic diversity", 
      "quantitative genetic experiment", 
      "landscape genetic studies", 
      "genetic diversity", 
      "genetic variation", 
      "gene flow", 
      "genetic experiments", 
      "adaptive potential", 
      "genetic data", 
      "genetic studies", 
      "neutral genetic variation", 
      "neutral genetic markers", 
      "neutral genetic data", 
      "evolutionary potential", 
      "population differentiation", 
      "adaptive traits", 
      "landscape genetics", 
      "natural selection", 
      "genetic markers", 
      "functional relevance", 
      "environmental conditions", 
      "diversity", 
      "species", 
      "landscape ecology", 
      "landscape ecologists", 
      "differentiation", 
      "gene variants", 
      "dispersal", 
      "ecology", 
      "genetics", 
      "ecologists", 
      "traits", 
      "population", 
      "variation", 
      "fitness", 
      "spatial index", 
      "study of processes", 
      "direct effect", 
      "potential uses", 
      "landscape", 
      "viability", 
      "variants", 
      "maintenance", 
      "migration", 
      "potential", 
      "markers", 
      "great potential", 
      "selection", 
      "types", 
      "connectivity", 
      "process", 
      "principal types", 
      "study", 
      "surrogate", 
      "experiments", 
      "uses", 
      "summary", 
      "data", 
      "relevance", 
      "index", 
      "conditions", 
      "flow", 
      "implications", 
      "differences", 
      "effect", 
      "results", 
      "fact", 
      "point", 
      "misuse", 
      "adaptive", 
      "molecular-genetic laboratory techniques analyse neutral genetic variation", 
      "laboratory techniques analyse neutral genetic variation", 
      "techniques analyse neutral genetic variation", 
      "analyse neutral genetic variation", 
      "adaptive genetic data"
    ], 
    "name": "Adaptive vs. neutral genetic diversity: implications for landscape genetics", 
    "pagination": "797-807", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009847065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10980-005-5245-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10980-005-5245-9", 
      "https://app.dimensions.ai/details/publication/pub.1009847065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_416.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10980-005-5245-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      22 PREDICATES      112 URIs      94 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10980-005-5245-9 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 anzsrc-for:06
4 anzsrc-for:0604
5 schema:author N7edb6bd29f48473ab37ba3a34943b6c0
6 schema:citation sg:pub.10.1007/s10592-003-1863-4
7 sg:pub.10.1007/s10980-005-5220-5
8 sg:pub.10.1007/s10980-005-5389-7
9 sg:pub.10.1007/s10980-005-5415-9
10 sg:pub.10.1007/s10980-005-5567-7
11 sg:pub.10.1007/s10980-005-7756-9
12 sg:pub.10.1023/a:1020561630963
13 sg:pub.10.1023/b:land.0000030441.15628.d6
14 schema:datePublished 2006-08
15 schema:datePublishedReg 2006-08-01
16 schema:description Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N5e9014d836804fefa54c4d8564c1a4bd
21 N986cc7614c924c1892b7517cb9f4c44a
22 sg:journal.1043738
23 schema:keywords adaptive
24 adaptive genetic data
25 adaptive genetic variation
26 adaptive potential
27 adaptive traits
28 analyse neutral genetic variation
29 conditions
30 connectivity
31 data
32 differences
33 differentiation
34 direct effect
35 dispersal
36 diversity
37 ecologists
38 ecology
39 effect
40 environmental conditions
41 evolutionary potential
42 experiments
43 fact
44 fitness
45 flow
46 functional relevance
47 gene flow
48 gene variants
49 genetic data
50 genetic diversity
51 genetic experiments
52 genetic markers
53 genetic studies
54 genetic variation
55 genetics
56 great potential
57 implications
58 index
59 laboratory techniques analyse neutral genetic variation
60 landscape
61 landscape ecologists
62 landscape ecology
63 landscape genetic studies
64 landscape genetics
65 maintenance
66 markers
67 migration
68 misuse
69 molecular-genetic laboratory techniques analyse neutral genetic variation
70 natural selection
71 neutral genetic data
72 neutral genetic diversity
73 neutral genetic markers
74 neutral genetic variation
75 point
76 population
77 population differentiation
78 potential
79 potential uses
80 principal types
81 process
82 quantitative genetic experiment
83 relevance
84 results
85 selection
86 spatial index
87 species
88 study
89 study of processes
90 summary
91 surrogate
92 techniques analyse neutral genetic variation
93 traits
94 types
95 uses
96 variants
97 variation
98 viability
99 schema:name Adaptive vs. neutral genetic diversity: implications for landscape genetics
100 schema:pagination 797-807
101 schema:productId Nb181007023924320b47b86c7c3a813f0
102 Nd0d5090f606648d3b9b15104e334af43
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847065
104 https://doi.org/10.1007/s10980-005-5245-9
105 schema:sdDatePublished 2021-11-01T18:09
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N4fe145daf9314cbaadd85cc40386d3d1
108 schema:url https://doi.org/10.1007/s10980-005-5245-9
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N4fe145daf9314cbaadd85cc40386d3d1 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N5e9014d836804fefa54c4d8564c1a4bd schema:volumeNumber 21
115 rdf:type schema:PublicationVolume
116 N79cbdb86d4e743169a46d4929ee78753 rdf:first sg:person.0730167015.47
117 rdf:rest Na0c28a4d48d54c7eb3d27fd042ae0cff
118 N7edb6bd29f48473ab37ba3a34943b6c0 rdf:first sg:person.01014057420.44
119 rdf:rest N79cbdb86d4e743169a46d4929ee78753
120 N986cc7614c924c1892b7517cb9f4c44a schema:issueNumber 6
121 rdf:type schema:PublicationIssue
122 Na0c28a4d48d54c7eb3d27fd042ae0cff rdf:first sg:person.0610705622.24
123 rdf:rest rdf:nil
124 Nb181007023924320b47b86c7c3a813f0 schema:name dimensions_id
125 schema:value pub.1009847065
126 rdf:type schema:PropertyValue
127 Nd0d5090f606648d3b9b15104e334af43 schema:name doi
128 schema:value 10.1007/s10980-005-5245-9
129 rdf:type schema:PropertyValue
130 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
131 schema:name Environmental Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
134 schema:name Environmental Science and Management
135 rdf:type schema:DefinedTerm
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
140 schema:name Genetics
141 rdf:type schema:DefinedTerm
142 sg:journal.1043738 schema:issn 0921-2973
143 1572-9761
144 schema:name Landscape Ecology
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01014057420.44 schema:affiliation grid-institutes:grid.419754.a
148 schema:familyName Holderegger
149 schema:givenName Rolf
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44
151 rdf:type schema:Person
152 sg:person.0610705622.24 schema:affiliation grid-institutes:grid.419754.a
153 schema:familyName Gugerli
154 schema:givenName Felix
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24
156 rdf:type schema:Person
157 sg:person.0730167015.47 schema:affiliation grid-institutes:grid.5801.c
158 schema:familyName Kamm
159 schema:givenName Urs
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730167015.47
161 rdf:type schema:Person
162 sg:pub.10.1007/s10592-003-1863-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020104884
163 https://doi.org/10.1007/s10592-003-1863-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10980-005-5220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012037468
166 https://doi.org/10.1007/s10980-005-5220-5
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10980-005-5389-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018914248
169 https://doi.org/10.1007/s10980-005-5389-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10980-005-5415-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007907493
172 https://doi.org/10.1007/s10980-005-5415-9
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10980-005-5567-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031485243
175 https://doi.org/10.1007/s10980-005-5567-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10980-005-7756-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037131595
178 https://doi.org/10.1007/s10980-005-7756-9
179 rdf:type schema:CreativeWork
180 sg:pub.10.1023/a:1020561630963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389895
181 https://doi.org/10.1023/a:1020561630963
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/b:land.0000030441.15628.d6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852402
184 https://doi.org/10.1023/b:land.0000030441.15628.d6
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.419754.a schema:alternateName Section of Ecological Genetics, WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
187 schema:name Section of Ecological Genetics, WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
188 rdf:type schema:Organization
189 grid-institutes:grid.5801.c schema:alternateName Department of Environmental Sciences, ETH Zürich Zentrum, Rämistrasse 101, CH-8092, Zürich, Switzerland
190 schema:name Department of Environmental Sciences, ETH Zürich Zentrum, Rämistrasse 101, CH-8092, Zürich, Switzerland
191 Section of Ecological Genetics, WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...