Adaptive vs. neutral genetic diversity: implications for landscape genetics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-08

AUTHORS

Rolf Holderegger, Urs Kamm, Felix Gugerli

ABSTRACT

Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies. More... »

PAGES

797-807

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9

DOI

http://dx.doi.org/10.1007/s10980-005-5245-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009847065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute for Forest, Snow and Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holderegger", 
        "givenName": "Rolf", 
        "id": "sg:person.01014057420.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland", 
            "Department of Environmental Sciences, ETH Z\u00fcrich Zentrum, R\u00e4mistrasse 101, CH-8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamm", 
        "givenName": "Urs", 
        "id": "sg:person.0730167015.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730167015.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute for Forest, Snow and Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "Section of Ecological Genetics, WSL Swiss Federal Research Institute, Z\u00fcrcherstrasse 111, CH-8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gugerli", 
        "givenName": "Felix", 
        "id": "sg:person.0610705622.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-1127(01)00645-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004232432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:land.0000030441.15628.d6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852402", 
          "https://doi.org/10.1023/b:land.0000030441.15628.d6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5415-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007907493", 
          "https://doi.org/10.1007/s10980-005-5415-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2004.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007943269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.2001.015003780.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009172194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2004.02393.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012037468", 
          "https://doi.org/10.1007/s10980-005-5220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1523-1739.2003.01236.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016940752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10144-004-0197-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017593443", 
          "https://doi.org/10.1007/s10144-004-0197-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5389-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018914248", 
          "https://doi.org/10.1007/s10980-005-5389-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1127(01)00635-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018953065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10592-003-1863-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020104884", 
          "https://doi.org/10.1007/s10592-003-1863-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021050588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(03)00008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021050588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1949.tb02451.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025534180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2004.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029658362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-5567-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031485243", 
          "https://doi.org/10.1007/s10980-005-5567-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(02)02478-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036604527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-005-7756-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037131595", 
          "https://doi.org/10.1007/s10980-005-7756-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(02)02571-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037157016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1469-8137.2003.00920.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037310626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020561630963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039389895", 
          "https://doi.org/10.1023/a:1020561630963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1420-9101.2001.00348.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039949507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-5347(01)02163-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047152297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.0962-1083.2001.01342.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050072048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0014-3820.2001.tb00629.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052575313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2004.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052889296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2389612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069905928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2408573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069917574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.1986.tb00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085710048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511817359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709897"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-08", 
    "datePublishedReg": "2006-08-01", 
    "description": "Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral \u2013 a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10980-005-5245-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043738", 
        "issn": [
          "0921-2973", 
          "1572-9761"
        ], 
        "name": "Landscape Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Adaptive vs. neutral genetic diversity: implications for landscape genetics", 
    "pagination": "797-807", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ee93f45d57c53927818a17096b9f31423c9d4e9bd74e4e1ea3f273cbc8563e1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10980-005-5245-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009847065"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10980-005-5245-9", 
      "https://app.dimensions.ai/details/publication/pub.1009847065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10980-005-5245-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10980-005-5245-9'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10980-005-5245-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N49d06b3a2ea34a5fb5e854353423b14c
4 schema:citation sg:pub.10.1007/s10144-004-0197-5
5 sg:pub.10.1007/s10592-003-1863-4
6 sg:pub.10.1007/s10980-005-5220-5
7 sg:pub.10.1007/s10980-005-5389-7
8 sg:pub.10.1007/s10980-005-5415-9
9 sg:pub.10.1007/s10980-005-5567-7
10 sg:pub.10.1007/s10980-005-7756-9
11 sg:pub.10.1023/a:1020561630963
12 sg:pub.10.1023/b:land.0000030441.15628.d6
13 https://doi.org/10.1016/j.biocon.2004.08.008
14 https://doi.org/10.1016/j.foreco.2004.05.006
15 https://doi.org/10.1016/j.foreco.2004.05.049
16 https://doi.org/10.1016/s0169-5347(01)02163-2
17 https://doi.org/10.1016/s0169-5347(02)02478-3
18 https://doi.org/10.1016/s0169-5347(02)02571-5
19 https://doi.org/10.1016/s0169-5347(03)00008-9
20 https://doi.org/10.1016/s0378-1127(01)00635-1
21 https://doi.org/10.1016/s0378-1127(01)00645-4
22 https://doi.org/10.1017/cbo9780511623486
23 https://doi.org/10.1017/cbo9780511817359
24 https://doi.org/10.1046/j.0962-1083.2001.01342.x
25 https://doi.org/10.1046/j.1420-9101.2001.00348.x
26 https://doi.org/10.1046/j.1469-8137.2003.00920.x
27 https://doi.org/10.1046/j.1523-1739.2001.015003780.x
28 https://doi.org/10.1046/j.1523-1739.2003.01236.x
29 https://doi.org/10.1111/j.0014-3820.2001.tb00629.x
30 https://doi.org/10.1111/j.1365-294x.2004.02393.x
31 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x
32 https://doi.org/10.1111/j.1558-5646.1986.tb00503.x
33 https://doi.org/10.2307/2389612
34 https://doi.org/10.2307/2408573
35 schema:datePublished 2006-08
36 schema:datePublishedReg 2006-08-01
37 schema:description Genetic diversity is important for the maintenance of the viability and the evolutionary or adaptive potential of populations and species. However, there are two principal types of genetic diversity: adaptive and neutral – a fact widely neglected by non-specialists. We introduce these two types of genetic diversity and critically point to their potential uses and misuses in population or landscape genetic studies. First, most molecular-genetic laboratory techniques analyse neutral genetic variation. This means that the gene variants detected do not have any direct effect on fitness. This type of genetic variation is thus selectively neutral and tells us nothing about the adaptive or evolutionary potential of a population or a species. Nevertheless, neutral genetic markers have great potential for investigating processes such as gene flow, migration or dispersal. Hence, they allow us to empirically test the functional relevance of spatial indices such as connectivity used in landscape ecology. Second, adaptive genetic variation, i.e. genetic variation under natural selection, is analysed in quantitative genetic experiments under controlled and uniform environmental conditions. Unfortunately, the genetic variation (i.e. heritability) and population differentiation at quantitative, adaptive traits is not directly linked with neutral genetic diversity or differentiation. Thus, neutral genetic data cannot serve as a surrogate of adaptive genetic data. In summary, neutral genetic diversity is well suited for the study of processes within landscapes such as gene flow, while the evolutionary or adaptive potential of populations or species has to be assessed in quantitative genetic experiments. Landscape ecologists have to mind these differences between neutral and adaptive genetic variation when interpreting the results of landscape genetic studies.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N56d0f8f49d594c95a56f3afc16ddaacd
42 Nb71e5712dcf741059991f1fb7537b26f
43 sg:journal.1043738
44 schema:name Adaptive vs. neutral genetic diversity: implications for landscape genetics
45 schema:pagination 797-807
46 schema:productId N2975cdee518241c287752a51727ca9c2
47 N79d77758f3aa44d88deedbe8530c4378
48 Nf6183cda897c409d9bd955107fda46a3
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009847065
50 https://doi.org/10.1007/s10980-005-5245-9
51 schema:sdDatePublished 2019-04-10T19:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N9ce46c1660e6447992ced29cb52808b3
54 schema:url http://link.springer.com/10.1007%2Fs10980-005-5245-9
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1ec36d29f5a34db9949a9a8bb32a48a7 rdf:first sg:person.0730167015.47
59 rdf:rest Nbc72c679b7b64fdc81400324daad4547
60 N2975cdee518241c287752a51727ca9c2 schema:name readcube_id
61 schema:value 2ee93f45d57c53927818a17096b9f31423c9d4e9bd74e4e1ea3f273cbc8563e1
62 rdf:type schema:PropertyValue
63 N49d06b3a2ea34a5fb5e854353423b14c rdf:first sg:person.01014057420.44
64 rdf:rest N1ec36d29f5a34db9949a9a8bb32a48a7
65 N56d0f8f49d594c95a56f3afc16ddaacd schema:issueNumber 6
66 rdf:type schema:PublicationIssue
67 N79d77758f3aa44d88deedbe8530c4378 schema:name doi
68 schema:value 10.1007/s10980-005-5245-9
69 rdf:type schema:PropertyValue
70 N9ce46c1660e6447992ced29cb52808b3 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb71e5712dcf741059991f1fb7537b26f schema:volumeNumber 21
73 rdf:type schema:PublicationVolume
74 Nbc72c679b7b64fdc81400324daad4547 rdf:first sg:person.0610705622.24
75 rdf:rest rdf:nil
76 Nf6183cda897c409d9bd955107fda46a3 schema:name dimensions_id
77 schema:value pub.1009847065
78 rdf:type schema:PropertyValue
79 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biological Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
83 schema:name Genetics
84 rdf:type schema:DefinedTerm
85 sg:journal.1043738 schema:issn 0921-2973
86 1572-9761
87 schema:name Landscape Ecology
88 rdf:type schema:Periodical
89 sg:person.01014057420.44 schema:affiliation https://www.grid.ac/institutes/grid.419754.a
90 schema:familyName Holderegger
91 schema:givenName Rolf
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014057420.44
93 rdf:type schema:Person
94 sg:person.0610705622.24 schema:affiliation https://www.grid.ac/institutes/grid.419754.a
95 schema:familyName Gugerli
96 schema:givenName Felix
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24
98 rdf:type schema:Person
99 sg:person.0730167015.47 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
100 schema:familyName Kamm
101 schema:givenName Urs
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730167015.47
103 rdf:type schema:Person
104 sg:pub.10.1007/s10144-004-0197-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017593443
105 https://doi.org/10.1007/s10144-004-0197-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10592-003-1863-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020104884
108 https://doi.org/10.1007/s10592-003-1863-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10980-005-5220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012037468
111 https://doi.org/10.1007/s10980-005-5220-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10980-005-5389-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018914248
114 https://doi.org/10.1007/s10980-005-5389-7
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10980-005-5415-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007907493
117 https://doi.org/10.1007/s10980-005-5415-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10980-005-5567-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031485243
120 https://doi.org/10.1007/s10980-005-5567-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10980-005-7756-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037131595
123 https://doi.org/10.1007/s10980-005-7756-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1020561630963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039389895
126 https://doi.org/10.1023/a:1020561630963
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/b:land.0000030441.15628.d6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852402
129 https://doi.org/10.1023/b:land.0000030441.15628.d6
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.biocon.2004.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007943269
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.foreco.2004.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052889296
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.foreco.2004.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029658362
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0169-5347(01)02163-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047152297
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0169-5347(02)02478-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036604527
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0169-5347(02)02571-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037157016
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0169-5347(03)00008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021050588
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0378-1127(01)00635-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018953065
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0378-1127(01)00645-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004232432
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/cbo9780511623486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709897
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/cbo9780511817359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668179
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1046/j.0962-1083.2001.01342.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050072048
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1046/j.1420-9101.2001.00348.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039949507
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1046/j.1469-8137.2003.00920.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037310626
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1046/j.1523-1739.2001.015003780.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009172194
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1046/j.1523-1739.2003.01236.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016940752
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1111/j.0014-3820.2001.tb00629.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052575313
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1365-294x.2004.02393.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010740426
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1469-1809.1949.tb02451.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025534180
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1558-5646.1986.tb00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085710048
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/2389612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069905928
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2307/2408573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069917574
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.419754.a schema:alternateName Swiss Federal Institute for Forest, Snow and Landscape Research
176 schema:name Section of Ecological Genetics, WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
179 schema:name Department of Environmental Sciences, ETH Zürich Zentrum, Rämistrasse 101, CH-8092, Zürich, Switzerland
180 Section of Ecological Genetics, WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...