Ontology type: schema:ScholarlyArticle
2019-03-13
AUTHORSMasoud Sobhani, Hossein Ajam
ABSTRACTIn the present study for the first time, Taguchi approach was applied to specify the optimal condition of the parameters in the natural convection heat transfer of Al2O3 nanofluid for a partially heated cavity. The flow and energy equations are solved by the lattice Boltzmann method. The influence of the 5 factors including Rayleigh number, position, hot length, cold length, volume concentration of the Al2O3 nanoparticles is examined. The Nusselt number on the hot section is measured for the response factor. In Taguchi optimization method, the levels of every factor were fixed at 3 levels and the L27 orthogonal array. The conclusions of the Taguchi–LBM technique indicated that the optimum conditions were attained at the maximum Rayleigh number, cold length and volume fraction and the minimum hot length in the bottom–bottom configuration in the variety of the design parameters. Also, the most significant parameter influencing the Nusselt number on the hot wall was the Rayleigh number, while changing the volume fraction had a negligible effect. More... »
PAGES1-16
http://scigraph.springernature.com/pub.10.1007/s10973-019-08170-3
DOIhttp://dx.doi.org/10.1007/s10973-019-08170-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112731825
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ferdowsi University of Mashhad",
"id": "https://www.grid.ac/institutes/grid.411301.6",
"name": [
"Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
],
"type": "Organization"
},
"familyName": "Sobhani",
"givenName": "Masoud",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ferdowsi University of Mashhad",
"id": "https://www.grid.ac/institutes/grid.411301.6",
"name": [
"Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
],
"type": "Organization"
},
"familyName": "Ajam",
"givenName": "Hossein",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001084269"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-455-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005601359",
"https://doi.org/10.1007/978-0-85729-455-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-455-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005601359",
"https://doi.org/10.1007/978-0-85729-455-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijthermalsci.2006.06.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008057548"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtice.2016.05.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008389213"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11012-016-0587-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011214649",
"https://doi.org/10.1007/s11012-016-0587-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11012-016-0587-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011214649",
"https://doi.org/10.1007/s11012-016-0587-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.apt.2008.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013722596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013811673"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.03.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016265560"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spmi.2012.10.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019268667"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01457632.2015.1060748",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023784588"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/10407782.2011.552363",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024829713"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028443526"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028443526"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031674849"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.12.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034017995"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.euromechflu.2009.05.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036162947"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.rser.2014.07.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038581748"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.063",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038718789"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0017-9310(89)90078-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040478946"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0017-9310(89)90078-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040478946"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.icheatmasstransfer.2006.11.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042401729"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.03.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042596435"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijthermalsci.2011.04.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043160292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.03.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044830815"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.euromechflu.2010.10.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046024482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1700493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057770936"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1115/1.3250537",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062112586"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0129183113500605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062905569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtice.2017.01.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083414669"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.molliq.2017.02.097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083900537"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtice.2017.01.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084529408"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjp/i2017-11471-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085130367",
"https://doi.org/10.1140/epjp/i2017-11471-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjp/i2017-11471-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085130367",
"https://doi.org/10.1140/epjp/i2017-11471-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090992078"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090993861"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.molliq.2017.09.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091478404"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4993866",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100106506"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cep.2018.01.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100247949"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00231-018-2356-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103779575",
"https://doi.org/10.1007/s00231-018-2356-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physa.2018.06.056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105070501"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0129183118500791",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105537330"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7518-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105549769",
"https://doi.org/10.1007/s10973-018-7518-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7518-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105549769",
"https://doi.org/10.1007/s10973-018-7518-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7518-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105549769",
"https://doi.org/10.1007/s10973-018-7518-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtice.2018.07.026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106120699"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7662-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106893726",
"https://doi.org/10.1007/s10973-018-7662-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7662-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106893726",
"https://doi.org/10.1007/s10973-018-7662-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7721-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107125391",
"https://doi.org/10.1007/s10973-018-7721-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7721-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107125391",
"https://doi.org/10.1007/s10973-018-7721-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0129183118501085",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107331346"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7824-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107685053",
"https://doi.org/10.1007/s10973-018-7824-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107821258"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10973-018-7881-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109805949",
"https://doi.org/10.1007/s10973-018-7881-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijmecsci.2018.11.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1110036050"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.29252/jafm.11.01.28167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1112392621"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-13",
"datePublishedReg": "2019-03-13",
"description": "In the present study for the first time, Taguchi approach was applied to specify the optimal condition of the parameters in the natural convection heat transfer of Al2O3 nanofluid for a partially heated cavity. The flow and energy equations are solved by the lattice Boltzmann method. The influence of the 5 factors including Rayleigh number, position, hot length, cold length, volume concentration of the Al2O3 nanoparticles is examined. The Nusselt number on the hot section is measured for the response factor. In Taguchi optimization method, the levels of every factor were fixed at 3 levels and the L27 orthogonal array. The conclusions of the Taguchi\u2013LBM technique indicated that the optimum conditions were attained at the maximum Rayleigh number, cold length and volume fraction and the minimum hot length in the bottom\u2013bottom configuration in the variety of the design parameters. Also, the most significant parameter influencing the Nusselt number on the hot wall was the Rayleigh number, while changing the volume fraction had a negligible effect.",
"genre": "research_article",
"id": "sg:pub.10.1007/s10973-019-08170-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1294862",
"issn": [
"1388-6150",
"1572-8943"
],
"name": "Journal of Thermal Analysis and Calorimetry",
"type": "Periodical"
}
],
"name": "Taguchi optimization for natural convection heat transfer of Al2O3 nanofluid in a partially heated cavity using LBM",
"pagination": "1-16",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9af346f90bf206bc5a62ef580cc946a84b33f71de89734654cafef62f1a219a0"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10973-019-08170-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112731825"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10973-019-08170-3",
"https://app.dimensions.ai/details/publication/pub.1112731825"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127422_00000011.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs10973-019-08170-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08170-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08170-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08170-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08170-3'
This table displays all metadata directly associated to this object as RDF triples.
213 TRIPLES
21 PREDICATES
72 URIs
16 LITERALS
5 BLANK NODES