Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

M. E. Nakhchi, J. A. Esfahani

ABSTRACT

Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it decreases with increasing the nanoparticle volume fraction. Frictional entropy generation reduces with increasing the number of holes from 4 to 10. This is because of stronger velocity gradient near the perforated holes. Bejan number decreases with augment of Reynolds number. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-019-08169-w

DOI

http://dx.doi.org/10.1007/s10973-019-08169-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112855638


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sharif University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412553.4", 
          "name": [
            "School of mechanical engineering, Sharif University of Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakhchi", 
        "givenName": "M. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esfahani", 
        "givenName": "J. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.enconman.2006.03.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006178174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2007.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008234617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015256066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017310874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019537955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021401179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027826634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.09.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031094443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039618558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042522989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2007.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043556516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4197-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046846597", 
          "https://doi.org/10.1007/s10973-014-4197-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051595408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053950397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21833/ijaas.2016.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069262759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21833/ijaas.2016.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069262791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204463", 
          "https://doi.org/10.1007/s10973-017-6102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204463", 
          "https://doi.org/10.1007/s10973-017-6102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.03.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2017.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084064719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084079951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.03.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084759985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.06.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085968914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2017.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090675641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6624-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091406160", 
          "https://doi.org/10.1007/s10973-017-6624-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091773121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6813-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092579293", 
          "https://doi.org/10.1007/s10973-017-6813-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.11.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092635922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6918-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099922137", 
          "https://doi.org/10.1007/s10973-017-6918-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t5298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100157135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100941327", 
          "https://doi.org/10.1007/s10973-018-7044-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100941327", 
          "https://doi.org/10.1007/s10973-018-7044-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101322487", 
          "https://doi.org/10.1007/s10973-018-7093-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101322487", 
          "https://doi.org/10.1007/s10973-018-7093-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101322487", 
          "https://doi.org/10.1007/s10973-018-7093-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7061-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400494", 
          "https://doi.org/10.1007/s10973-018-7061-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7061-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400494", 
          "https://doi.org/10.1007/s10973-018-7061-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7061-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400494", 
          "https://doi.org/10.1007/s10973-018-7061-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7061-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101400494", 
          "https://doi.org/10.1007/s10973-018-7061-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401669", 
          "https://doi.org/10.1007/s10973-018-7268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401669", 
          "https://doi.org/10.1007/s10973-018-7268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401669", 
          "https://doi.org/10.1007/s10973-018-7268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401669", 
          "https://doi.org/10.1007/s10973-018-7268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7268-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103401669", 
          "https://doi.org/10.1007/s10973-018-7268-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7276-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103852531", 
          "https://doi.org/10.1007/s10973-018-7276-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7276-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103852531", 
          "https://doi.org/10.1007/s10973-018-7276-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7350-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103973925", 
          "https://doi.org/10.1007/s10973-018-7350-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7350-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103973925", 
          "https://doi.org/10.1007/s10973-018-7350-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t5373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104388574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2018.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105173822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7500-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299262", 
          "https://doi.org/10.1007/s10973-018-7500-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7500-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299262", 
          "https://doi.org/10.1007/s10973-018-7500-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-018-2445-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106079856", 
          "https://doi.org/10.1007/s00231-018-2445-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-018-2445-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106079856", 
          "https://doi.org/10.1007/s00231-018-2445-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-018-2445-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106079856", 
          "https://doi.org/10.1007/s00231-018-2445-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.08.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106491174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsep.2018.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110012749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsep.2018.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110012749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110397989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7969-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110535784", 
          "https://doi.org/10.1007/s10973-018-7969-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7969-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110535784", 
          "https://doi.org/10.1007/s10973-018-7969-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7969-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110535784", 
          "https://doi.org/10.1007/s10973-018-7969-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111012813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3166/jesa.51.141-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111470192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2019.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111580648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2019.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111580648"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "Entropy generation analysis for the Cu\u2013water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000\u201315,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it decreases with increasing the nanoparticle volume fraction. Frictional entropy generation reduces with increasing the number of holes from 4 to 10. This is because of stronger velocity gradient near the perforated holes. Bejan number decreases with augment of Reynolds number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-019-08169-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }
    ], 
    "name": "Entropy generation of turbulent Cu\u2013water nanofluid flow in a heat exchanger tube fitted with perforated conical rings", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2e4c977be97083b3ea7ae929f69883e8d6618c8bbf87682edad5a0752e8959a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-019-08169-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112855638"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-019-08169-w", 
      "https://app.dimensions.ai/details/publication/pub.1112855638"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53998_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-019-08169-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08169-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08169-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08169-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08169-w'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      72 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-019-08169-w schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0cc89ea2855a490b97c81be3efeaa595
4 schema:citation sg:pub.10.1007/s00231-018-2445-9
5 sg:pub.10.1007/s10973-014-4197-1
6 sg:pub.10.1007/s10973-017-6102-1
7 sg:pub.10.1007/s10973-017-6624-6
8 sg:pub.10.1007/s10973-017-6813-3
9 sg:pub.10.1007/s10973-017-6918-8
10 sg:pub.10.1007/s10973-018-7044-y
11 sg:pub.10.1007/s10973-018-7061-x
12 sg:pub.10.1007/s10973-018-7093-2
13 sg:pub.10.1007/s10973-018-7268-x
14 sg:pub.10.1007/s10973-018-7276-x
15 sg:pub.10.1007/s10973-018-7350-4
16 sg:pub.10.1007/s10973-018-7500-8
17 sg:pub.10.1007/s10973-018-7969-1
18 https://doi.org/10.1016/j.apenergy.2003.09.001
19 https://doi.org/10.1016/j.applthermaleng.2016.09.068
20 https://doi.org/10.1016/j.applthermaleng.2017.03.095
21 https://doi.org/10.1016/j.applthermaleng.2017.03.145
22 https://doi.org/10.1016/j.applthermaleng.2017.06.036
23 https://doi.org/10.1016/j.applthermaleng.2017.11.048
24 https://doi.org/10.1016/j.apt.2015.12.011
25 https://doi.org/10.1016/j.cep.2017.03.013
26 https://doi.org/10.1016/j.enconman.2006.03.034
27 https://doi.org/10.1016/j.enconman.2007.06.009
28 https://doi.org/10.1016/j.enconman.2010.06.072
29 https://doi.org/10.1016/j.enconman.2017.09.025
30 https://doi.org/10.1016/j.expthermflusci.2018.06.025
31 https://doi.org/10.1016/j.icheatmasstransfer.2007.03.019
32 https://doi.org/10.1016/j.icheatmasstransfer.2009.12.015
33 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016
34 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.014
35 https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.033
36 https://doi.org/10.1016/j.ijthermalsci.2008.10.004
37 https://doi.org/10.1016/j.ijthermalsci.2017.07.002
38 https://doi.org/10.1016/j.ijthermalsci.2018.12.039
39 https://doi.org/10.1016/j.ijthermalsci.2019.01.016
40 https://doi.org/10.1016/j.molliq.2015.12.034
41 https://doi.org/10.1016/j.molliq.2016.05.039
42 https://doi.org/10.1016/j.physrep.2018.11.003
43 https://doi.org/10.1016/j.physrep.2018.11.004
44 https://doi.org/10.1016/j.powtec.2018.08.087
45 https://doi.org/10.1016/j.tsep.2018.11.006
46 https://doi.org/10.21833/ijaas.2016.07.004
47 https://doi.org/10.21833/ijaas.2016.09.005
48 https://doi.org/10.2514/1.t4907
49 https://doi.org/10.2514/1.t5298
50 https://doi.org/10.2514/1.t5373
51 https://doi.org/10.3166/jesa.51.141-152
52 schema:datePublished 2019-03-18
53 schema:datePublishedReg 2019-03-18
54 schema:description Entropy generation analysis for the Cu–water nanofluid flow through a heat exchanger tube equipped with perforated conical rings is numerically investigated. Frictional and thermal entropy generation rates are defined as functions of velocity and temperature gradients. Governing equations are solved by using finite volume method, and Reynolds number is in the range of 5000–15,000. The effects of geometrical and physical parameters such as Reynolds number, number of holes and nanoparticles volume fraction on the thermal and viscous entropy generation rates and Bejan number are investigated. The results indicate that the thermal irreversibility is dominant in most part of the tube. But it decreases with increasing the nanoparticle volume fraction. Frictional entropy generation reduces with increasing the number of holes from 4 to 10. This is because of stronger velocity gradient near the perforated holes. Bejan number decreases with augment of Reynolds number.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree false
58 schema:isPartOf sg:journal.1294862
59 schema:name Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings
60 schema:pagination 1-14
61 schema:productId N08b34b5214c947ceade4bd9458f7b528
62 Na6708301728a415c8c58b93948641f34
63 Nb9f63419c80f4841bc6cc3ed573b8c84
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112855638
65 https://doi.org/10.1007/s10973-019-08169-w
66 schema:sdDatePublished 2019-04-11T12:13
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N6f41771a955644359d67af41751d2a54
69 schema:url https://link.springer.com/10.1007%2Fs10973-019-08169-w
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N08b34b5214c947ceade4bd9458f7b528 schema:name readcube_id
74 schema:value a2e4c977be97083b3ea7ae929f69883e8d6618c8bbf87682edad5a0752e8959a
75 rdf:type schema:PropertyValue
76 N0cc89ea2855a490b97c81be3efeaa595 rdf:first Nb148bf377f244f80ad5c2f5dd2a60c29
77 rdf:rest N35f332cd7e7e44fcaf3b737078791ac1
78 N35f332cd7e7e44fcaf3b737078791ac1 rdf:first Na411f6514db84892a9183c699ad9803f
79 rdf:rest rdf:nil
80 N6f41771a955644359d67af41751d2a54 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Na411f6514db84892a9183c699ad9803f schema:affiliation https://www.grid.ac/institutes/grid.411301.6
83 schema:familyName Esfahani
84 schema:givenName J. A.
85 rdf:type schema:Person
86 Na6708301728a415c8c58b93948641f34 schema:name doi
87 schema:value 10.1007/s10973-019-08169-w
88 rdf:type schema:PropertyValue
89 Nb148bf377f244f80ad5c2f5dd2a60c29 schema:affiliation https://www.grid.ac/institutes/grid.412553.4
90 schema:familyName Nakhchi
91 schema:givenName M. E.
92 rdf:type schema:Person
93 Nb9f63419c80f4841bc6cc3ed573b8c84 schema:name dimensions_id
94 schema:value pub.1112855638
95 rdf:type schema:PropertyValue
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
100 schema:name Interdisciplinary Engineering
101 rdf:type schema:DefinedTerm
102 sg:journal.1294862 schema:issn 1388-6150
103 1572-8943
104 schema:name Journal of Thermal Analysis and Calorimetry
105 rdf:type schema:Periodical
106 sg:pub.10.1007/s00231-018-2445-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106079856
107 https://doi.org/10.1007/s00231-018-2445-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10973-014-4197-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046846597
110 https://doi.org/10.1007/s10973-014-4197-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10973-017-6102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074204463
113 https://doi.org/10.1007/s10973-017-6102-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10973-017-6624-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091406160
116 https://doi.org/10.1007/s10973-017-6624-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10973-017-6813-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092579293
119 https://doi.org/10.1007/s10973-017-6813-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10973-017-6918-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099922137
122 https://doi.org/10.1007/s10973-017-6918-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10973-018-7044-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100941327
125 https://doi.org/10.1007/s10973-018-7044-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10973-018-7061-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101400494
128 https://doi.org/10.1007/s10973-018-7061-x
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10973-018-7093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101322487
131 https://doi.org/10.1007/s10973-018-7093-2
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s10973-018-7268-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103401669
134 https://doi.org/10.1007/s10973-018-7268-x
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s10973-018-7276-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103852531
137 https://doi.org/10.1007/s10973-018-7276-x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10973-018-7350-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103973925
140 https://doi.org/10.1007/s10973-018-7350-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10973-018-7500-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105299262
143 https://doi.org/10.1007/s10973-018-7500-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10973-018-7969-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110535784
146 https://doi.org/10.1007/s10973-018-7969-1
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.apenergy.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051595408
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.applthermaleng.2016.09.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031094443
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.applthermaleng.2017.03.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059097
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.applthermaleng.2017.03.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759985
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.applthermaleng.2017.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085968914
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.applthermaleng.2017.11.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092635922
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.apt.2015.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618558
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.cep.2017.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084064719
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.enconman.2006.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006178174
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.enconman.2007.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008234617
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.enconman.2010.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042522989
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.enconman.2017.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091773121
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.expthermflusci.2018.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105173822
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.icheatmasstransfer.2007.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043556516
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.icheatmasstransfer.2009.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269088
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015256066
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053950397
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084079951
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ijthermalsci.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019537955
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ijthermalsci.2017.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090675641
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ijthermalsci.2018.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111012813
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ijthermalsci.2019.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111580648
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.molliq.2015.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017310874
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.molliq.2016.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027826634
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.physrep.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110373958
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.physrep.2018.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110397989
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.powtec.2018.08.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106491174
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.tsep.2018.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110012749
203 rdf:type schema:CreativeWork
204 https://doi.org/10.21833/ijaas.2016.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069262759
205 rdf:type schema:CreativeWork
206 https://doi.org/10.21833/ijaas.2016.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069262791
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2514/1.t4907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021401179
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2514/1.t5298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100157135
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2514/1.t5373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104388574
213 rdf:type schema:CreativeWork
214 https://doi.org/10.3166/jesa.51.141-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111470192
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
217 schema:name Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.412553.4 schema:alternateName Sharif University of Technology
220 schema:name School of mechanical engineering, Sharif University of Technology, Tehran, Iran
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...