An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-13

AUTHORS

Majid Mohammadi, Abazar Abadeh, Reza Nemati-Farouji, Mohammad Passandideh-Fard

ABSTRACT

In this research, water–Fe3O4 nanofluid flow and heat transfer factors are optimized in a helically coiled pipe using Taguchi method. Numerical simulations using the ANSYS Fluent 18.2 are obtained first to provide the input data for the Taguchi method. Experiments are also performed to validate the results of the simulations. An experimental setup is constructed and initial experiments with water and water–Fe3O4 nanofluid are executed using various mass flow rates. A single-phase approach is employed as the numerical simulation model. The Taguchi method is selected as a test design method. Three different control factors (mass flow rate, coil curvature ratio and fluid type) with four levels are selected with the Taguchi method. An effective parameter, η, is defined to investigate the influence of different control parameters on heat transfer and fluid flow characteristics. Results show that mass flow rate is the most effective factor on η. Fluid type and the coil curvature ratio are next effective parameters, respectively. Through the course of this study, it is found that the best conditions to achieve the maximum η value are: mass flow rate value of 6.98 g s−1, 1% vol. nanofluid as fluid type and coil curvature ratio of 0.048. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-019-08167-y

DOI

http://dx.doi.org/10.1007/s10973-019-08167-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112731823


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammadi", 
        "givenName": "Majid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abadeh", 
        "givenName": "Abazar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemati-Farouji", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Passandideh-Fard", 
        "givenName": "Mohammad", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1556-276x-6-181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005139067", 
          "https://doi.org/10.1186/1556-276x-6-181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00986448008912549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011987781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013326538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2012.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020144758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022480143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.08.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024266758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2015.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029068397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032550465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2005.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036733953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042061218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043455780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046276796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046822721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-011-0917-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047250362", 
          "https://doi.org/10.1007/s00231-011-0917-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048590416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00614-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00614-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051172769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051380546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051664286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052637620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457630701850851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053625881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053811463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112074000796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053811463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2824120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.04.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084934570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091907397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092236653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/imece2013-63344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092813704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.01.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100426483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2018.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100484205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105008470", 
          "https://doi.org/10.1007/s10973-018-7478-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105008470", 
          "https://doi.org/10.1007/s10973-018-7478-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7662-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106893726", 
          "https://doi.org/10.1007/s10973-018-7662-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7662-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106893726", 
          "https://doi.org/10.1007/s10973-018-7662-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2018.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107892332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110397989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110684865", 
          "https://doi.org/10.1007/s10973-018-7972-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110684865", 
          "https://doi.org/10.1007/s10973-018-7972-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-13", 
    "datePublishedReg": "2019-03-13", 
    "description": "In this research, water\u2013Fe3O4 nanofluid flow and heat transfer factors are optimized in a helically coiled pipe using Taguchi method. Numerical simulations using the ANSYS Fluent 18.2 are obtained first to provide the input data for the Taguchi method. Experiments are also performed to validate the results of the simulations. An experimental setup is constructed and initial experiments with water and water\u2013Fe3O4 nanofluid are executed using various mass flow rates. A single-phase approach is employed as the numerical simulation model. The Taguchi method is selected as a test design method. Three different control factors (mass flow rate, coil curvature ratio and fluid type) with four levels are selected with the Taguchi method. An effective parameter, \u03b7, is defined to investigate the influence of different control parameters on heat transfer and fluid flow characteristics. Results show that mass flow rate is the most effective factor on \u03b7. Fluid type and the coil curvature ratio are next effective parameters, respectively. Through the course of this study, it is found that the best conditions to achieve the maximum \u03b7 value are: mass flow rate value of 6.98 g s\u22121, 1% vol. nanofluid as fluid type and coil curvature ratio of 0.048.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-019-08167-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }
    ], 
    "name": "An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "82709d1319538b651d90ce5b202d27c5b5d4d857b5d2d777147bd79e5e41bc02"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-019-08167-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112731823"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-019-08167-y", 
      "https://app.dimensions.ai/details/publication/pub.1112731823"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127461_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-019-08167-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08167-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08167-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08167-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08167-y'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-019-08167-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nfb49b9ece89440f0b3106b7b08ae5a33
4 schema:citation sg:pub.10.1007/s00231-011-0917-2
5 sg:pub.10.1007/s10973-018-7478-2
6 sg:pub.10.1007/s10973-018-7662-4
7 sg:pub.10.1007/s10973-018-7972-6
8 sg:pub.10.1186/1556-276x-6-181
9 https://doi.org/10.1016/j.applthermaleng.2012.05.036
10 https://doi.org/10.1016/j.applthermaleng.2016.03.033
11 https://doi.org/10.1016/j.applthermaleng.2016.08.051
12 https://doi.org/10.1016/j.applthermaleng.2017.04.074
13 https://doi.org/10.1016/j.apsusc.2007.03.053
14 https://doi.org/10.1016/j.enconman.2017.08.039
15 https://doi.org/10.1016/j.enconman.2018.01.006
16 https://doi.org/10.1016/j.enconman.2018.10.037
17 https://doi.org/10.1016/j.expthermflusci.2005.03.021
18 https://doi.org/10.1016/j.expthermflusci.2005.08.005
19 https://doi.org/10.1016/j.expthermflusci.2011.10.004
20 https://doi.org/10.1016/j.expthermflusci.2017.10.013
21 https://doi.org/10.1016/j.icheatmasstransfer.2012.02.008
22 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
23 https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.017
24 https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.031
25 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.064
26 https://doi.org/10.1016/j.ijthermalsci.2015.08.008
27 https://doi.org/10.1016/j.partic.2009.01.007
28 https://doi.org/10.1016/j.physrep.2018.11.004
29 https://doi.org/10.1016/j.powtec.2015.05.019
30 https://doi.org/10.1016/j.powtec.2018.01.025
31 https://doi.org/10.1016/j.rser.2012.05.023
32 https://doi.org/10.1016/s0304-8853(02)00614-5
33 https://doi.org/10.1017/s0022112074000796
34 https://doi.org/10.1080/00986448008912549
35 https://doi.org/10.1080/01457630701850851
36 https://doi.org/10.1115/1.2824120
37 https://doi.org/10.1115/imece2013-63344
38 schema:datePublished 2019-03-13
39 schema:datePublishedReg 2019-03-13
40 schema:description In this research, water–Fe3O4 nanofluid flow and heat transfer factors are optimized in a helically coiled pipe using Taguchi method. Numerical simulations using the ANSYS Fluent 18.2 are obtained first to provide the input data for the Taguchi method. Experiments are also performed to validate the results of the simulations. An experimental setup is constructed and initial experiments with water and water–Fe3O4 nanofluid are executed using various mass flow rates. A single-phase approach is employed as the numerical simulation model. The Taguchi method is selected as a test design method. Three different control factors (mass flow rate, coil curvature ratio and fluid type) with four levels are selected with the Taguchi method. An effective parameter, η, is defined to investigate the influence of different control parameters on heat transfer and fluid flow characteristics. Results show that mass flow rate is the most effective factor on η. Fluid type and the coil curvature ratio are next effective parameters, respectively. Through the course of this study, it is found that the best conditions to achieve the maximum η value are: mass flow rate value of 6.98 g s−1, 1% vol. nanofluid as fluid type and coil curvature ratio of 0.048.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1294862
45 schema:name An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method
46 schema:pagination 1-14
47 schema:productId N056c399251aa440baf1c81da79d75c25
48 Naeb701be735b43f9a873885529d67ae5
49 Nc4ab3065a1e047bfbf3ba7ef63a245da
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112731823
51 https://doi.org/10.1007/s10973-019-08167-y
52 schema:sdDatePublished 2019-04-11T11:47
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Ne31f84537ddb4077a1c559e25ce0295b
55 schema:url https://link.springer.com/10.1007%2Fs10973-019-08167-y
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N056c399251aa440baf1c81da79d75c25 schema:name dimensions_id
60 schema:value pub.1112731823
61 rdf:type schema:PropertyValue
62 N4fdd9a94b8924df3a61a1c711ed98e0a rdf:first Nb00c80c7a4044398bbd818c3a33529ea
63 rdf:rest rdf:nil
64 N5d90f1faaf214cdeac2dea0e76884ab3 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
65 schema:familyName Mohammadi
66 schema:givenName Majid
67 rdf:type schema:Person
68 Na94c5df98fa24a3d998576940d51896d rdf:first Nda094af6d040498daa33e69510eafae7
69 rdf:rest Naa3c8803e78342479bd2d50f2d1f5733
70 Naa3c8803e78342479bd2d50f2d1f5733 rdf:first Nd42ce341cc684da9a618e359e5f22698
71 rdf:rest N4fdd9a94b8924df3a61a1c711ed98e0a
72 Naeb701be735b43f9a873885529d67ae5 schema:name doi
73 schema:value 10.1007/s10973-019-08167-y
74 rdf:type schema:PropertyValue
75 Nb00c80c7a4044398bbd818c3a33529ea schema:affiliation https://www.grid.ac/institutes/grid.411301.6
76 schema:familyName Passandideh-Fard
77 schema:givenName Mohammad
78 rdf:type schema:Person
79 Nc4ab3065a1e047bfbf3ba7ef63a245da schema:name readcube_id
80 schema:value 82709d1319538b651d90ce5b202d27c5b5d4d857b5d2d777147bd79e5e41bc02
81 rdf:type schema:PropertyValue
82 Nd42ce341cc684da9a618e359e5f22698 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
83 schema:familyName Nemati-Farouji
84 schema:givenName Reza
85 rdf:type schema:Person
86 Nda094af6d040498daa33e69510eafae7 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
87 schema:familyName Abadeh
88 schema:givenName Abazar
89 rdf:type schema:Person
90 Ne31f84537ddb4077a1c559e25ce0295b schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nfb49b9ece89440f0b3106b7b08ae5a33 rdf:first N5d90f1faaf214cdeac2dea0e76884ab3
93 rdf:rest Na94c5df98fa24a3d998576940d51896d
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
98 schema:name Interdisciplinary Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1294862 schema:issn 1388-6150
101 1572-8943
102 schema:name Journal of Thermal Analysis and Calorimetry
103 rdf:type schema:Periodical
104 sg:pub.10.1007/s00231-011-0917-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047250362
105 https://doi.org/10.1007/s00231-011-0917-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10973-018-7478-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105008470
108 https://doi.org/10.1007/s10973-018-7478-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10973-018-7662-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893726
111 https://doi.org/10.1007/s10973-018-7662-4
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10973-018-7972-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110684865
114 https://doi.org/10.1007/s10973-018-7972-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/1556-276x-6-181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005139067
117 https://doi.org/10.1186/1556-276x-6-181
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.applthermaleng.2012.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020144758
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.applthermaleng.2016.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046822721
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.applthermaleng.2016.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024266758
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.applthermaleng.2017.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084934570
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apsusc.2007.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046276796
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.enconman.2017.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091907397
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.enconman.2018.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100484205
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.enconman.2018.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107892332
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.expthermflusci.2005.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036733953
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.expthermflusci.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051664286
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.expthermflusci.2011.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043455780
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.expthermflusci.2017.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092236653
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.icheatmasstransfer.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042061218
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048590416
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032550465
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051172769
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051380546
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijthermalsci.2015.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029068397
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.partic.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013326538
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.physrep.2018.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110397989
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.powtec.2015.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022480143
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.powtec.2018.01.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100426483
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.rser.2012.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052637620
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0304-8853(02)00614-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050720928
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/s0022112074000796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053811463
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/00986448008912549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011987781
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/01457630701850851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053625881
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1115/1.2824120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085463
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1115/imece2013-63344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092813704
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
178 schema:name Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...