Numerical investigation of the mixed convection of a magnetic nanofluid in an annulus between two vertical concentric cylinders under the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

Mohamad Hamed Hekmat, Marzie Babaie Rabiee, Kaveh Karimzadeh Ziarati

ABSTRACT

In the present study, the hydrothermal behavior of a magnetic nanofluid (4 vol% magnetite–water) in the annular space between two vertical circular cylinders under the influence of a linear magnetic field with negative gradient is numerically investigated. In particular, the effects of the Grashof number (1000 ≤ Gr ≤ 50,000), Reynolds number (20 ≤ Re ≤ 200), and the annulus radius ratio (1.5 ≤ Do/Di ≤ 3.5) on the hydrothermal characteristics of the magnetic nanofluid are presented in detail. The flow is assumed to be steady, incompressible, and viscous. The two-phase mixture model is used to simulate the flow and heat transfer of the magnetic nanofluid. The three-dimensional governing equations are discretized using the finite volume scheme, while the SIMPLE algorithm is employed to couple the velocity and pressure. Moreover, the second-order upwind scheme is used to discretize the convective terms of the momentum and energy equations. The results show that the skin friction coefficient on the inner and outer walls of the annuli increases and decreases, respectively, by enhancing the Grashof number as well as the ratio of the radius. It is found that the Nusselt number increases by increasing the Grashof number. In the presence of an external magnetic field with the negative gradient, the skin friction coefficient on the inner and outer walls of the annulus is enhanced by decreasing the Reynolds number. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-019-08158-z

DOI

http://dx.doi.org/10.1007/s10973-019-08158-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703277


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tafresh University", 
          "id": "https://www.grid.ac/institutes/grid.449613.d", 
          "name": [
            "Department of Mechanical Engineering, Tafresh University, 39518-79611, Tafresh, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hekmat", 
        "givenName": "Mohamad Hamed", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Mechanical Engineering, Persian Gulf University, Bushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabiee", 
        "givenName": "Marzie Babaie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tafresh University", 
          "id": "https://www.grid.ac/institutes/grid.449613.d", 
          "name": [
            "Department of Mechanical Engineering, Tafresh University, 39518-79611, Tafresh, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziarati", 
        "givenName": "Kaveh Karimzadeh", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10973-016-5550-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001677968", 
          "https://doi.org/10.1007/s10973-016-5550-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002052851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002224197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2008.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004132039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4754271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007539237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008033296", 
          "https://doi.org/10.1007/3-540-45646-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008033296", 
          "https://doi.org/10.1007/3-540-45646-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2011.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009623223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009664099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(89)90073-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009664099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2014.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011632337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mee.2013.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012689296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012803728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-008-9253-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013083974", 
          "https://doi.org/10.1007/s11242-008-9253-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2015.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013190879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2014.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013495968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2013.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015820171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017310874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2012.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017451117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.04.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017878544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020349307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(67)90144-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021060032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021738778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024056241", 
          "https://doi.org/10.1007/s10973-016-5560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024056241", 
          "https://doi.org/10.1007/s10973-016-5560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2013.07.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024359705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024973914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2005.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027156841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-014-2321-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029763342", 
          "https://doi.org/10.1007/s11051-014-2321-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030303824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030451861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2013.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031235360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aic.690010420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032742328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(65)90055-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033925760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0017-9310(65)90055-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033925760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2011.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034856694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-727x(99)00067-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036476385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2014.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036770961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16194-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648319", 
          "https://doi.org/10.1140/epjp/i2016-16194-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16194-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038648319", 
          "https://doi.org/10.1140/epjp/i2016-16194-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15567260701333869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041302554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rinp.2016.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041620777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-5113-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041976216", 
          "https://doi.org/10.1007/s10973-015-5113-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044493905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044627611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16423-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046226241", 
          "https://doi.org/10.1140/epjp/i2016-16423-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2016-16423-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046226241", 
          "https://doi.org/10.1140/epjp/i2016-16423-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01625497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047147214", 
          "https://doi.org/10.1007/bf01625497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048120533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2008.12.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048932419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112077001062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054041005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112077001062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054041005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2015.2416318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4023847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085205666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.10.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092414974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6773-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482349", 
          "https://doi.org/10.1007/s10973-017-6773-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470180693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470180693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100349982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7396-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104400560", 
          "https://doi.org/10.1007/s10973-018-7396-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7396-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104400560", 
          "https://doi.org/10.1007/s10973-018-7396-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7500-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299262", 
          "https://doi.org/10.1007/s10973-018-7500-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7500-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105299262", 
          "https://doi.org/10.1007/s10973-018-7500-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108034801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110397989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110508312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110508312"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "In the present study, the hydrothermal behavior of a magnetic nanofluid (4 vol% magnetite\u2013water) in the annular space between two vertical circular cylinders under the influence of a linear magnetic field with negative gradient is numerically investigated. In particular, the effects of the Grashof number (1000 \u2264 Gr \u2264 50,000), Reynolds number (20 \u2264 Re \u2264 200), and the annulus radius ratio (1.5 \u2264 Do/Di \u2264 3.5) on the hydrothermal characteristics of the magnetic nanofluid are presented in detail. The flow is assumed to be steady, incompressible, and viscous. The two-phase mixture model is used to simulate the flow and heat transfer of the magnetic nanofluid. The three-dimensional governing equations are discretized using the finite volume scheme, while the SIMPLE algorithm is employed to couple the velocity and pressure. Moreover, the second-order upwind scheme is used to discretize the convective terms of the momentum and energy equations. The results show that the skin friction coefficient on the inner and outer walls of the annuli increases and decreases, respectively, by enhancing the Grashof number as well as the ratio of the radius. It is found that the Nusselt number increases by increasing the Grashof number. In the presence of an external magnetic field with the negative gradient, the skin friction coefficient on the inner and outer walls of the annulus is enhanced by decreasing the Reynolds number.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-019-08158-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }
    ], 
    "name": "Numerical investigation of the mixed convection of a magnetic nanofluid in an annulus between two vertical concentric cylinders under the influence of a non-uniform external magnetic field", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "388c72123a20461d55f7ba9b277284d0f0b660822ba9e0b3357b121ef70f3823"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-019-08158-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703277"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-019-08158-z", 
      "https://app.dimensions.ai/details/publication/pub.1112703277"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127456_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-019-08158-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08158-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08158-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08158-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08158-z'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      86 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-019-08158-z schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N205957c7958f4d0cb8b7876a4012cf11
4 schema:citation sg:pub.10.1007/3-540-45646-5
5 sg:pub.10.1007/bf01625497
6 sg:pub.10.1007/s10973-015-5113-z
7 sg:pub.10.1007/s10973-016-5550-3
8 sg:pub.10.1007/s10973-016-5560-1
9 sg:pub.10.1007/s10973-017-6773-7
10 sg:pub.10.1007/s10973-018-7070-9
11 sg:pub.10.1007/s10973-018-7396-3
12 sg:pub.10.1007/s10973-018-7500-8
13 sg:pub.10.1007/s11051-014-2321-6
14 sg:pub.10.1007/s11242-008-9253-5
15 sg:pub.10.1140/epjp/i2016-16194-3
16 sg:pub.10.1140/epjp/i2016-16423-9
17 https://doi.org/10.1002/9780470180693
18 https://doi.org/10.1002/aic.690010420
19 https://doi.org/10.1016/0017-9310(65)90055-4
20 https://doi.org/10.1016/0017-9310(67)90144-5
21 https://doi.org/10.1016/0017-9310(89)90073-2
22 https://doi.org/10.1016/j.applthermaleng.2007.06.019
23 https://doi.org/10.1016/j.applthermaleng.2011.08.010
24 https://doi.org/10.1016/j.applthermaleng.2018.01.041
25 https://doi.org/10.1016/j.applthermaleng.2018.11.011
26 https://doi.org/10.1016/j.apt.2014.07.013
27 https://doi.org/10.1016/j.cap.2008.12.047
28 https://doi.org/10.1016/j.egypro.2013.07.091
29 https://doi.org/10.1016/j.enconman.2008.09.005
30 https://doi.org/10.1016/j.enconman.2013.09.008
31 https://doi.org/10.1016/j.expthermflusci.2013.04.011
32 https://doi.org/10.1016/j.icheatmasstransfer.2005.12.003
33 https://doi.org/10.1016/j.icheatmasstransfer.2010.12.022
34 https://doi.org/10.1016/j.icheatmasstransfer.2014.07.001
35 https://doi.org/10.1016/j.icheatmasstransfer.2015.01.006
36 https://doi.org/10.1016/j.ijheatfluidflow.2008.01.007
37 https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012
38 https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031
39 https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.023
40 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.068
41 https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124
42 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
43 https://doi.org/10.1016/j.ijthermalsci.2011.03.007
44 https://doi.org/10.1016/j.ijthermalsci.2012.10.016
45 https://doi.org/10.1016/j.ijthermalsci.2013.06.006
46 https://doi.org/10.1016/j.jmmm.2011.02.039
47 https://doi.org/10.1016/j.jmmm.2011.09.028
48 https://doi.org/10.1016/j.jmmm.2014.08.004
49 https://doi.org/10.1016/j.jmmm.2015.04.095
50 https://doi.org/10.1016/j.jmmm.2015.10.034
51 https://doi.org/10.1016/j.jmmm.2017.05.014
52 https://doi.org/10.1016/j.jmmm.2017.10.110
53 https://doi.org/10.1016/j.mee.2013.01.048
54 https://doi.org/10.1016/j.molliq.2015.12.034
55 https://doi.org/10.1016/j.partic.2014.12.017
56 https://doi.org/10.1016/j.physrep.2018.11.003
57 https://doi.org/10.1016/j.physrep.2018.11.004
58 https://doi.org/10.1016/j.rinp.2016.12.022
59 https://doi.org/10.1016/j.rser.2012.12.039
60 https://doi.org/10.1016/s0142-727x(99)00067-3
61 https://doi.org/10.1017/s0022112077001062
62 https://doi.org/10.1063/1.4754271
63 https://doi.org/10.1080/15567260701333869
64 https://doi.org/10.1109/tnano.2015.2416318
65 https://doi.org/10.1115/1.4023847
66 schema:datePublished 2019-03-12
67 schema:datePublishedReg 2019-03-12
68 schema:description In the present study, the hydrothermal behavior of a magnetic nanofluid (4 vol% magnetite–water) in the annular space between two vertical circular cylinders under the influence of a linear magnetic field with negative gradient is numerically investigated. In particular, the effects of the Grashof number (1000 ≤ Gr ≤ 50,000), Reynolds number (20 ≤ Re ≤ 200), and the annulus radius ratio (1.5 ≤ Do/Di ≤ 3.5) on the hydrothermal characteristics of the magnetic nanofluid are presented in detail. The flow is assumed to be steady, incompressible, and viscous. The two-phase mixture model is used to simulate the flow and heat transfer of the magnetic nanofluid. The three-dimensional governing equations are discretized using the finite volume scheme, while the SIMPLE algorithm is employed to couple the velocity and pressure. Moreover, the second-order upwind scheme is used to discretize the convective terms of the momentum and energy equations. The results show that the skin friction coefficient on the inner and outer walls of the annuli increases and decreases, respectively, by enhancing the Grashof number as well as the ratio of the radius. It is found that the Nusselt number increases by increasing the Grashof number. In the presence of an external magnetic field with the negative gradient, the skin friction coefficient on the inner and outer walls of the annulus is enhanced by decreasing the Reynolds number.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree false
72 schema:isPartOf sg:journal.1294862
73 schema:name Numerical investigation of the mixed convection of a magnetic nanofluid in an annulus between two vertical concentric cylinders under the influence of a non-uniform external magnetic field
74 schema:pagination 1-15
75 schema:productId N4cb5c044a67a48d1b0faf2d160e740bd
76 N6666fd363a7b4f8d86f18a1aa035d8d8
77 N6ce7a42be1a340b0b8f25df76c69e346
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703277
79 https://doi.org/10.1007/s10973-019-08158-z
80 schema:sdDatePublished 2019-04-11T11:45
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Ne70de4f052b546178b26d92c46a4731e
83 schema:url https://link.springer.com/10.1007%2Fs10973-019-08158-z
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N205957c7958f4d0cb8b7876a4012cf11 rdf:first N60e8557966754a639948b32f3eb15b05
88 rdf:rest N32bb6fed2aa14671bef2bf158c2c3dc5
89 N32bb6fed2aa14671bef2bf158c2c3dc5 rdf:first Nfd30d7d2d9c74d2ab1ff704882a5b7dc
90 rdf:rest Nb9ded1b751754732a7d4fca80de1eab4
91 N4cb5c044a67a48d1b0faf2d160e740bd schema:name doi
92 schema:value 10.1007/s10973-019-08158-z
93 rdf:type schema:PropertyValue
94 N60e8557966754a639948b32f3eb15b05 schema:affiliation https://www.grid.ac/institutes/grid.449613.d
95 schema:familyName Hekmat
96 schema:givenName Mohamad Hamed
97 rdf:type schema:Person
98 N6666fd363a7b4f8d86f18a1aa035d8d8 schema:name dimensions_id
99 schema:value pub.1112703277
100 rdf:type schema:PropertyValue
101 N6ce7a42be1a340b0b8f25df76c69e346 schema:name readcube_id
102 schema:value 388c72123a20461d55f7ba9b277284d0f0b660822ba9e0b3357b121ef70f3823
103 rdf:type schema:PropertyValue
104 Nb9ded1b751754732a7d4fca80de1eab4 rdf:first Ncbb8789308b94258a3b6461540469e8d
105 rdf:rest rdf:nil
106 Ncbb8789308b94258a3b6461540469e8d schema:affiliation https://www.grid.ac/institutes/grid.449613.d
107 schema:familyName Ziarati
108 schema:givenName Kaveh Karimzadeh
109 rdf:type schema:Person
110 Ne70de4f052b546178b26d92c46a4731e schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nfd30d7d2d9c74d2ab1ff704882a5b7dc schema:affiliation https://www.grid.ac/institutes/grid.412491.b
113 schema:familyName Rabiee
114 schema:givenName Marzie Babaie
115 rdf:type schema:Person
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
120 schema:name Interdisciplinary Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1294862 schema:issn 1388-6150
123 1572-8943
124 schema:name Journal of Thermal Analysis and Calorimetry
125 rdf:type schema:Periodical
126 sg:pub.10.1007/3-540-45646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008033296
127 https://doi.org/10.1007/3-540-45646-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf01625497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047147214
130 https://doi.org/10.1007/bf01625497
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10973-015-5113-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041976216
133 https://doi.org/10.1007/s10973-015-5113-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10973-016-5550-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001677968
136 https://doi.org/10.1007/s10973-016-5550-3
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s10973-016-5560-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056241
139 https://doi.org/10.1007/s10973-016-5560-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10973-017-6773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482349
142 https://doi.org/10.1007/s10973-017-6773-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
145 https://doi.org/10.1007/s10973-018-7070-9
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10973-018-7396-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104400560
148 https://doi.org/10.1007/s10973-018-7396-3
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10973-018-7500-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105299262
151 https://doi.org/10.1007/s10973-018-7500-8
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11051-014-2321-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029763342
154 https://doi.org/10.1007/s11051-014-2321-6
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11242-008-9253-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013083974
157 https://doi.org/10.1007/s11242-008-9253-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1140/epjp/i2016-16194-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038648319
160 https://doi.org/10.1140/epjp/i2016-16194-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1140/epjp/i2016-16423-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046226241
163 https://doi.org/10.1140/epjp/i2016-16423-9
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/9780470180693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661624
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/aic.690010420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032742328
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0017-9310(65)90055-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033925760
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0017-9310(67)90144-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021060032
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0017-9310(89)90073-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009664099
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.applthermaleng.2007.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032210644
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.applthermaleng.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030451861
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.applthermaleng.2018.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349982
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.applthermaleng.2018.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108034801
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.apt.2014.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013495968
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cap.2008.12.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048932419
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.egypro.2013.07.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024359705
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.enconman.2008.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004132039
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.enconman.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015820171
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.expthermflusci.2013.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048120533
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.icheatmasstransfer.2005.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027156841
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.icheatmasstransfer.2010.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044627611
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.icheatmasstransfer.2014.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044493905
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.icheatmasstransfer.2015.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013190879
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ijheatfluidflow.2008.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024973914
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.ijheatfluidflow.2010.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021738778
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012803728
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030303824
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020349307
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110508312
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002052851
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.ijthermalsci.2011.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674640
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.ijthermalsci.2012.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017451117
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.ijthermalsci.2013.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031235360
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.jmmm.2011.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009623223
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.jmmm.2011.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034856694
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.jmmm.2014.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036770961
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.jmmm.2015.04.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878544
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jmmm.2015.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036476385
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.jmmm.2017.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085205666
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.jmmm.2017.10.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092414974
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.mee.2013.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012689296
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.molliq.2015.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017310874
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.partic.2014.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011632337
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.physrep.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110373958
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.physrep.2018.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110397989
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.rinp.2016.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041620777
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.rser.2012.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002224197
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/s0142-727x(99)00067-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035753922
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1017/s0022112077001062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054041005
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1063/1.4754271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007539237
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1080/15567260701333869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041302554
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/tnano.2015.2416318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713318
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1115/1.4023847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149165
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
264 schema:name Department of Mechanical Engineering, Persian Gulf University, Bushehr, Iran
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.449613.d schema:alternateName Tafresh University
267 schema:name Department of Mechanical Engineering, Tafresh University, 39518-79611, Tafresh, Iran
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...