Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-20

AUTHORS

Jalal Alsarraf, Reza Rahmani, Amin Shahsavar, Masoud Afrand, Somchai Wongwises, Minh Duc Tran

ABSTRACT

A numerical investigation is carried out to assess the hydrothermal performance of a water-based hybrid nanofluid containing both Fe3O4 (magnetite) nanoparticles and carbon nanotubes (CNTs) in a heated tube in the presence of a constant non-uniform magnetic field. The magnetic field is created by three pairs of permanent magnets. The effects of Reynolds number, magnetite, and CNT volume concentrations as well as magnetic field strength are investigated. The acquired data for the case of without magnetic field confirmed higher values of heat transfer and pressure drop as a result of utilizing nanofluid compared with water. Additionally, it was found that the Nusselt number and pressure drop of the studied nanofluid samples increase significantly under the magnetic field. Moreover, the influence of magnetic field increases with an increase in the nanoparticle concentrations and magnetic field strength and decrease in the Reynolds number. The maximum increments of 109.31% and 25.02% in comparison with the case of without field were obtained in the average Nusselt number and pressure drop for hybrid nanofluid containing 0.9% magnetite and 1.35% CNT at Reynolds number of 500. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-019-08078-y

DOI

http://dx.doi.org/10.1007/s10973-019-08078-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112262039


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Public Authority for Applied Education and Training", 
          "id": "https://www.grid.ac/institutes/grid.459471.a", 
          "name": [
            "Automotive and Marine Engineering Department, College of Technological Studies (CTS), Public Authority for Applied Education and Training (PAAET), 70654, Shuwaikh, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alsarraf", 
        "givenName": "Jalal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kermanshah University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.459724.9", 
          "name": [
            "Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmani", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kermanshah University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.459724.9", 
          "name": [
            "Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahsavar", 
        "givenName": "Amin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University of Najafabad", 
          "id": "https://www.grid.ac/institutes/grid.468905.6", 
          "name": [
            "Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afrand", 
        "givenName": "Masoud", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand", 
            "The Academy of Science, The Royal Society of Thailand, Sanam Suea Pa, 10300, Dusit, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ton Duc Thang University", 
          "id": "https://www.grid.ac/institutes/grid.444812.f", 
          "name": [
            "Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam", 
            "Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Minh Duc", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000816193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2015.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002390340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.synthmet.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003540646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004103466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004721374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2016.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018476714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.09.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020996580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022541023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023105198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026025479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026586549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-015-1743-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030682399", 
          "https://doi.org/10.1007/s00231-015-1743-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01447973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032571512", 
          "https://doi.org/10.1007/bf01447973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2015.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039111966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039242810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039838438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039838438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.12.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044099903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044473735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2016.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051499826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200572720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052678737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ed076p943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055465321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3642974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057990499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2017.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084064724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086031837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.07.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090678964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091084616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091492671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091895588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.09.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107169703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110101435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110373958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2018.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110397989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2018.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2018.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2018.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110582692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-018-02558-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111153600", 
          "https://doi.org/10.1007/s00231-018-02558-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-20", 
    "datePublishedReg": "2019-02-20", 
    "description": "A numerical investigation is carried out to assess the hydrothermal performance of a water-based hybrid nanofluid containing both Fe3O4 (magnetite) nanoparticles and carbon nanotubes (CNTs) in a heated tube in the presence of a constant non-uniform magnetic field. The magnetic field is created by three pairs of permanent magnets. The effects of Reynolds number, magnetite, and CNT volume concentrations as well as magnetic field strength are investigated. The acquired data for the case of without magnetic field confirmed higher values of heat transfer and pressure drop as a result of utilizing nanofluid compared with water. Additionally, it was found that the Nusselt number and pressure drop of the studied nanofluid samples increase significantly under the magnetic field. Moreover, the influence of magnetic field increases with an increase in the nanoparticle concentrations and magnetic field strength and decrease in the Reynolds number. The maximum increments of 109.31% and 25.02% in comparison with the case of without field were obtained in the average Nusselt number and pressure drop for hybrid nanofluid containing 0.9% magnetite and 1.35% CNT at Reynolds number of 500.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-019-08078-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }
    ], 
    "name": "Effect of magnetic field on laminar forced convective heat transfer of MWCNT\u2013Fe3O4/water hybrid nanofluid in a heated tube", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51a56543b43b68e899e8a7a870cb10666ef70a959da75bf414a57f2db2437e79"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-019-08078-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112262039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-019-08078-y", 
      "https://app.dimensions.ai/details/publication/pub.1112262039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-019-08078-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08078-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08078-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08078-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08078-y'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-019-08078-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0e8a5378924e43c8a4fb52294f2508c8
4 schema:citation sg:pub.10.1007/bf01447973
5 sg:pub.10.1007/s00231-015-1743-8
6 sg:pub.10.1007/s00231-018-02558-x
7 https://doi.org/10.1002/pssb.200572720
8 https://doi.org/10.1016/j.applthermaleng.2016.09.091
9 https://doi.org/10.1016/j.applthermaleng.2017.07.100
10 https://doi.org/10.1016/j.applthermaleng.2017.09.009
11 https://doi.org/10.1016/j.apt.2016.05.015
12 https://doi.org/10.1016/j.cep.2017.03.018
13 https://doi.org/10.1016/j.enconman.2017.08.007
14 https://doi.org/10.1016/j.expthermflusci.2013.04.018
15 https://doi.org/10.1016/j.expthermflusci.2015.07.002
16 https://doi.org/10.1016/j.expthermflusci.2016.03.010
17 https://doi.org/10.1016/j.expthermflusci.2017.09.018
18 https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
19 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.029
20 https://doi.org/10.1016/j.icheatmasstransfer.2016.09.015
21 https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009
22 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029
23 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.011
24 https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.069
25 https://doi.org/10.1016/j.jmmm.2003.09.015
26 https://doi.org/10.1016/j.jmmm.2016.12.129
27 https://doi.org/10.1016/j.molliq.2016.12.013
28 https://doi.org/10.1016/j.molliq.2018.12.055
29 https://doi.org/10.1016/j.physleta.2016.12.017
30 https://doi.org/10.1016/j.physrep.2018.11.003
31 https://doi.org/10.1016/j.physrep.2018.11.004
32 https://doi.org/10.1016/j.powtec.2015.01.031
33 https://doi.org/10.1016/j.powtec.2017.06.023
34 https://doi.org/10.1016/j.powtec.2018.09.052
35 https://doi.org/10.1016/j.synthmet.2007.05.009
36 https://doi.org/10.1016/j.tca.2015.08.025
37 https://doi.org/10.1021/ed076p943
38 https://doi.org/10.1063/1.3642974
39 https://doi.org/10.1103/physreve.89.022310
40 schema:datePublished 2019-02-20
41 schema:datePublishedReg 2019-02-20
42 schema:description A numerical investigation is carried out to assess the hydrothermal performance of a water-based hybrid nanofluid containing both Fe3O4 (magnetite) nanoparticles and carbon nanotubes (CNTs) in a heated tube in the presence of a constant non-uniform magnetic field. The magnetic field is created by three pairs of permanent magnets. The effects of Reynolds number, magnetite, and CNT volume concentrations as well as magnetic field strength are investigated. The acquired data for the case of without magnetic field confirmed higher values of heat transfer and pressure drop as a result of utilizing nanofluid compared with water. Additionally, it was found that the Nusselt number and pressure drop of the studied nanofluid samples increase significantly under the magnetic field. Moreover, the influence of magnetic field increases with an increase in the nanoparticle concentrations and magnetic field strength and decrease in the Reynolds number. The maximum increments of 109.31% and 25.02% in comparison with the case of without field were obtained in the average Nusselt number and pressure drop for hybrid nanofluid containing 0.9% magnetite and 1.35% CNT at Reynolds number of 500.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1294862
47 schema:name Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube
48 schema:pagination 1-17
49 schema:productId N7f9bae6aad9048709cb7c5db5c7ce752
50 Na8e982932ead456688b1bd9003dd7b3f
51 Nd1d9678be63c4da9bd6c78c56a544898
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262039
53 https://doi.org/10.1007/s10973-019-08078-y
54 schema:sdDatePublished 2019-04-11T09:31
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Necf8dbd6dc1c4b4eb5c1dd98a79559f1
57 schema:url https://link.springer.com/10.1007%2Fs10973-019-08078-y
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N096337e35c5449338fdd41439a77bcc4 schema:affiliation https://www.grid.ac/institutes/grid.468905.6
62 schema:familyName Afrand
63 schema:givenName Masoud
64 rdf:type schema:Person
65 N0cafdd02ea99492e8a0cd81a97fb74ff rdf:first N547689700b7e442f999768fc5b8342c9
66 rdf:rest N4acc4c1998aa4a2db834097204f620a1
67 N0e8a5378924e43c8a4fb52294f2508c8 rdf:first N83b57c673e2b4dc99ba92c90b21b4e45
68 rdf:rest N7cd5077cae894fb0aa9f64b29a66de0f
69 N44d5ef5c38924b8d8ca1bbfd74398062 schema:affiliation https://www.grid.ac/institutes/grid.459724.9
70 schema:familyName Rahmani
71 schema:givenName Reza
72 rdf:type schema:Person
73 N4acc4c1998aa4a2db834097204f620a1 rdf:first Nd989b88a0bb7485d839f4dd288d6bc44
74 rdf:rest rdf:nil
75 N534bb00e99864fdc8042505f17ec974f rdf:first N096337e35c5449338fdd41439a77bcc4
76 rdf:rest N0cafdd02ea99492e8a0cd81a97fb74ff
77 N547689700b7e442f999768fc5b8342c9 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
78 schema:familyName Wongwises
79 schema:givenName Somchai
80 rdf:type schema:Person
81 N7cafd4e0db444502933c0a04fd3d24ce schema:affiliation https://www.grid.ac/institutes/grid.459724.9
82 schema:familyName Shahsavar
83 schema:givenName Amin
84 rdf:type schema:Person
85 N7cd5077cae894fb0aa9f64b29a66de0f rdf:first N44d5ef5c38924b8d8ca1bbfd74398062
86 rdf:rest N8587a2844620413c8621952f21c4fa98
87 N7f9bae6aad9048709cb7c5db5c7ce752 schema:name dimensions_id
88 schema:value pub.1112262039
89 rdf:type schema:PropertyValue
90 N83b57c673e2b4dc99ba92c90b21b4e45 schema:affiliation https://www.grid.ac/institutes/grid.459471.a
91 schema:familyName Alsarraf
92 schema:givenName Jalal
93 rdf:type schema:Person
94 N8587a2844620413c8621952f21c4fa98 rdf:first N7cafd4e0db444502933c0a04fd3d24ce
95 rdf:rest N534bb00e99864fdc8042505f17ec974f
96 Na8e982932ead456688b1bd9003dd7b3f schema:name readcube_id
97 schema:value 51a56543b43b68e899e8a7a870cb10666ef70a959da75bf414a57f2db2437e79
98 rdf:type schema:PropertyValue
99 Nd1d9678be63c4da9bd6c78c56a544898 schema:name doi
100 schema:value 10.1007/s10973-019-08078-y
101 rdf:type schema:PropertyValue
102 Nd989b88a0bb7485d839f4dd288d6bc44 schema:affiliation https://www.grid.ac/institutes/grid.444812.f
103 schema:familyName Tran
104 schema:givenName Minh Duc
105 rdf:type schema:Person
106 Necf8dbd6dc1c4b4eb5c1dd98a79559f1 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
112 schema:name Interdisciplinary Engineering
113 rdf:type schema:DefinedTerm
114 sg:journal.1294862 schema:issn 1388-6150
115 1572-8943
116 schema:name Journal of Thermal Analysis and Calorimetry
117 rdf:type schema:Periodical
118 sg:pub.10.1007/bf01447973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032571512
119 https://doi.org/10.1007/bf01447973
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00231-015-1743-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030682399
122 https://doi.org/10.1007/s00231-015-1743-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00231-018-02558-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1111153600
125 https://doi.org/10.1007/s00231-018-02558-x
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/pssb.200572720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052678737
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.applthermaleng.2016.09.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020996580
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.applthermaleng.2017.07.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090678964
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.applthermaleng.2017.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091492671
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apt.2016.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051499826
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.cep.2017.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084064724
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.enconman.2017.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091084616
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.expthermflusci.2013.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004103466
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.expthermflusci.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721374
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.expthermflusci.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039242810
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.expthermflusci.2017.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091895588
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022541023
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023105198
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.icheatmasstransfer.2016.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044473735
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000816193
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026025479
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026586549
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110101435
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.jmmm.2003.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039838438
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.jmmm.2016.12.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099903
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.molliq.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031909609
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.molliq.2018.12.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110582692
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.physleta.2016.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018476714
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.physrep.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110373958
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.physrep.2018.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110397989
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.powtec.2015.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002390340
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.powtec.2017.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086031837
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.powtec.2018.09.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107169703
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.synthmet.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540646
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.tca.2015.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039111966
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ed076p943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055465321
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3642974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057990499
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreve.89.022310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745857
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
194 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand
195 The Academy of Science, The Royal Society of Thailand, Sanam Suea Pa, 10300, Dusit, Bangkok, Thailand
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.444812.f schema:alternateName Ton Duc Thang University
198 schema:name Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
199 Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.459471.a schema:alternateName Public Authority for Applied Education and Training
202 schema:name Automotive and Marine Engineering Department, College of Technological Studies (CTS), Public Authority for Applied Education and Training (PAAET), 70654, Shuwaikh, Kuwait
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.459724.9 schema:alternateName Kermanshah University of Technology
205 schema:name Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.468905.6 schema:alternateName Islamic Azad University of Najafabad
208 schema:name Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...