Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-19

AUTHORS

Navid Moghaddaszadeh, Javad Abolfazli Esfahani, Omid Mahian

ABSTRACT

Optimizing the performance of solar collectors and photovoltaic thermal systems that are used for heating/cooling of building as well as electricity generation will efficiently help to approach zero-energy buildings. For this purpose, improving the efficiency of heat exchangers as the main part of solar collectors and photovoltaic thermal systems is necessary. In this paper, two passive methods are employed to ameliorate the efficiency of heat exchangers. To do this, the effect of using Al2O3/water nanofluid in a heat exchanger tube with a swirling flow turbulator was studied. A numerical simulation was carried out to obtain thermal–hydraulic performance in the tube with eccentric helical screw-tape turbulators. The influences of different parameters including nanoparticles volume fraction and eccentricity of tube insert on the performance of heat exchanger are investigated. The results reveal that the coefficient of heat transfer enhances approximately 4.5 times by using nanofluid at nanoparticles volume fraction of 4% with helical turbulator compared to the plain tube at nanoparticles volume fraction of 0%. It was also found that the value of Performance Evaluation Criterion ameliorates as the nanoparticle loading increases. The maximum value of Performance Evaluation Criterion reached 2.2 at nanoparticles volume fraction of 4%, Reynolds number of 4000 and eccentricity of 3. The results of this study reveal the potential of the suggested technique to enhance various thermal systems including solar collectors. More... »

PAGES

1-13

References to SciGraph publications

  • 2019-01. A review of concentrating solar thermal collectors with and without nanofluids in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2018-03. Applications of nanofluids in condensing and evaporating systems in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2019-01. Combination of nanofluid and inserts for heat transfer enhancement in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2019-01. Applications of nanofluids in porous medium in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2017-03. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2019-04. Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-019-08009-x

    DOI

    http://dx.doi.org/10.1007/s10973-019-08009-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111541039


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ferdowsi University of Mashhad", 
              "id": "https://www.grid.ac/institutes/grid.411301.6", 
              "name": [
                "Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moghaddaszadeh", 
            "givenName": "Navid", 
            "id": "sg:person.011217750457.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217750457.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ferdowsi University of Mashhad", 
              "id": "https://www.grid.ac/institutes/grid.411301.6", 
              "name": [
                "Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esfahani", 
            "givenName": "Javad Abolfazli", 
            "id": "sg:person.015351030507.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015351030507.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ferdowsi University of Mashhad", 
              "id": "https://www.grid.ac/institutes/grid.411301.6", 
              "name": [
                "School of Chemical Engineering and Technology, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi, China", 
                "Center for Advanced Technologies, Ferdowsi University of Mashhad, Mashhad, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mahian", 
            "givenName": "Omid", 
            "id": "sg:person.011516505301.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2006.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002641430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2014.01.061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006659553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2010.03.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006831415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(81)90015-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007538250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(81)90015-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007538250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011506078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.12149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016789681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijthermalsci.2014.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025904458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5868-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026573412", 
              "https://doi.org/10.1007/s10973-016-5868-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5868-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026573412", 
              "https://doi.org/10.1007/s10973-016-5868-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2015.03.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027452720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2016.03.080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029140065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.energy.2014.09.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038775814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2015.09.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043214778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048571603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cep.2017.03.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084064719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085039104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2017.04.134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085205543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2017.06.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085968914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086127142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bjbas.2017.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091409317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.renene.2017.10.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092333852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6773-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092482349", 
              "https://doi.org/10.1007/s10973-017-6773-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2017.11.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099925359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2017.11.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099925359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100288739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.egypro.2017.12.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100735651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.renene.2018.01.097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100774044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2018.01.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100821206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2018.01.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100821206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rinp.2018.02.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101345139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rinp.2018.02.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101345139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rinp.2018.02.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101345139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rinp.2018.02.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101345139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101374933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7183-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101550920", 
              "https://doi.org/10.1007/s10973-018-7183-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7183-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101550920", 
              "https://doi.org/10.1007/s10973-018-7183-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7183-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101550920", 
              "https://doi.org/10.1007/s10973-018-7183-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103208880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2018.03.091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103266825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2018.04.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103392438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2018.04.099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103816670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7565-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105774981", 
              "https://doi.org/10.1007/s10973-018-7565-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7565-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105774981", 
              "https://doi.org/10.1007/s10973-018-7565-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7724-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106948899", 
              "https://doi.org/10.1007/s10973-018-7724-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7724-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106948899", 
              "https://doi.org/10.1007/s10973-018-7724-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110373958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2018.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110373958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2018.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110397989"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-19", 
        "datePublishedReg": "2019-01-19", 
        "description": "Optimizing the performance of solar collectors and photovoltaic thermal systems that are used for heating/cooling of building as well as electricity generation will efficiently help to approach zero-energy buildings. For this purpose, improving the efficiency of heat exchangers as the main part of solar collectors and photovoltaic thermal systems is necessary. In this paper, two passive methods are employed to ameliorate the efficiency of heat exchangers. To do this, the effect of using Al2O3/water nanofluid in a heat exchanger tube with a swirling flow turbulator was studied. A numerical simulation was carried out to obtain thermal\u2013hydraulic performance in the tube with eccentric helical screw-tape turbulators. The influences of different parameters including nanoparticles volume fraction and eccentricity of tube insert on the performance of heat exchanger are investigated. The results reveal that the coefficient of heat transfer enhances approximately 4.5 times by using nanofluid at nanoparticles volume fraction of 4% with helical turbulator compared to the plain tube at nanoparticles volume fraction of 0%. It was also found that the value of Performance Evaluation Criterion ameliorates as the nanoparticle loading increases. The maximum value of Performance Evaluation Criterion reached 2.2 at nanoparticles volume fraction of 4%, Reynolds number of 4000 and eccentricity of 3. The results of this study reveal the potential of the suggested technique to enhance various thermal systems including solar collectors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10973-019-08009-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }
        ], 
        "name": "Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2039c0ca45bb70ef6389284e235158a97bc554e16279db170494e0fc40b7e921"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-019-08009-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111541039"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-019-08009-x", 
          "https://app.dimensions.ai/details/publication/pub.1111541039"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65017_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10973-019-08009-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08009-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08009-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08009-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-019-08009-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-019-08009-x schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N5e9dc62a9f40402bb7505ef7fed6c135
    4 schema:citation sg:pub.10.1007/s10973-016-5868-x
    5 sg:pub.10.1007/s10973-017-6773-7
    6 sg:pub.10.1007/s10973-018-7070-9
    7 sg:pub.10.1007/s10973-018-7183-1
    8 sg:pub.10.1007/s10973-018-7565-4
    9 sg:pub.10.1007/s10973-018-7724-7
    10 https://doi.org/10.1016/0017-9310(81)90015-6
    11 https://doi.org/10.1016/j.apenergy.2014.01.061
    12 https://doi.org/10.1016/j.apenergy.2015.09.025
    13 https://doi.org/10.1016/j.apenergy.2017.11.076
    14 https://doi.org/10.1016/j.apenergy.2018.01.059
    15 https://doi.org/10.1016/j.apenergy.2018.04.099
    16 https://doi.org/10.1016/j.applthermaleng.2010.03.026
    17 https://doi.org/10.1016/j.applthermaleng.2017.04.134
    18 https://doi.org/10.1016/j.applthermaleng.2017.06.036
    19 https://doi.org/10.1016/j.bjbas.2017.08.003
    20 https://doi.org/10.1016/j.cep.2017.03.013
    21 https://doi.org/10.1016/j.egypro.2017.12.103
    22 https://doi.org/10.1016/j.enconman.2015.03.042
    23 https://doi.org/10.1016/j.enconman.2016.03.080
    24 https://doi.org/10.1016/j.energy.2014.09.049
    25 https://doi.org/10.1016/j.icheatmasstransfer.2006.10.006
    26 https://doi.org/10.1016/j.icheatmasstransfer.2013.05.006
    27 https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041
    28 https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062
    29 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030
    30 https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.096
    31 https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052
    32 https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.022
    33 https://doi.org/10.1016/j.ijthermalsci.2014.03.005
    34 https://doi.org/10.1016/j.molliq.2018.04.077
    35 https://doi.org/10.1016/j.physrep.2018.11.003
    36 https://doi.org/10.1016/j.physrep.2018.11.004
    37 https://doi.org/10.1016/j.renene.2017.10.056
    38 https://doi.org/10.1016/j.renene.2018.01.097
    39 https://doi.org/10.1016/j.rinp.2018.02.067
    40 https://doi.org/10.1016/j.rser.2018.03.091
    41 https://doi.org/10.2514/3.12149
    42 schema:datePublished 2019-01-19
    43 schema:datePublishedReg 2019-01-19
    44 schema:description Optimizing the performance of solar collectors and photovoltaic thermal systems that are used for heating/cooling of building as well as electricity generation will efficiently help to approach zero-energy buildings. For this purpose, improving the efficiency of heat exchangers as the main part of solar collectors and photovoltaic thermal systems is necessary. In this paper, two passive methods are employed to ameliorate the efficiency of heat exchangers. To do this, the effect of using Al2O3/water nanofluid in a heat exchanger tube with a swirling flow turbulator was studied. A numerical simulation was carried out to obtain thermal–hydraulic performance in the tube with eccentric helical screw-tape turbulators. The influences of different parameters including nanoparticles volume fraction and eccentricity of tube insert on the performance of heat exchanger are investigated. The results reveal that the coefficient of heat transfer enhances approximately 4.5 times by using nanofluid at nanoparticles volume fraction of 4% with helical turbulator compared to the plain tube at nanoparticles volume fraction of 0%. It was also found that the value of Performance Evaluation Criterion ameliorates as the nanoparticle loading increases. The maximum value of Performance Evaluation Criterion reached 2.2 at nanoparticles volume fraction of 4%, Reynolds number of 4000 and eccentricity of 3. The results of this study reveal the potential of the suggested technique to enhance various thermal systems including solar collectors.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf sg:journal.1294862
    49 schema:name Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids
    50 schema:pagination 1-13
    51 schema:productId N9333c1f5f36446e39037d6e21981ab14
    52 Nd1b7e514b51d43f7b23fdaaa706d8f80
    53 Nf42622b1df8f4788a254d8b965ee1080
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111541039
    55 https://doi.org/10.1007/s10973-019-08009-x
    56 schema:sdDatePublished 2019-04-11T08:43
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N9511ce7dfda941b08f94ac19e79cad8d
    59 schema:url https://link.springer.com/10.1007%2Fs10973-019-08009-x
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N5e9dc62a9f40402bb7505ef7fed6c135 rdf:first sg:person.011217750457.96
    64 rdf:rest Nb50764cd775e4d99a8af712499c2f6dd
    65 N9333c1f5f36446e39037d6e21981ab14 schema:name doi
    66 schema:value 10.1007/s10973-019-08009-x
    67 rdf:type schema:PropertyValue
    68 N9511ce7dfda941b08f94ac19e79cad8d schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nb50764cd775e4d99a8af712499c2f6dd rdf:first sg:person.015351030507.53
    71 rdf:rest Nbb4e46984e6c4243ab14228454c7d7dc
    72 Nbb4e46984e6c4243ab14228454c7d7dc rdf:first sg:person.011516505301.04
    73 rdf:rest rdf:nil
    74 Nd1b7e514b51d43f7b23fdaaa706d8f80 schema:name dimensions_id
    75 schema:value pub.1111541039
    76 rdf:type schema:PropertyValue
    77 Nf42622b1df8f4788a254d8b965ee1080 schema:name readcube_id
    78 schema:value 2039c0ca45bb70ef6389284e235158a97bc554e16279db170494e0fc40b7e921
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Engineering
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Interdisciplinary Engineering
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1294862 schema:issn 1388-6150
    87 1572-8943
    88 schema:name Journal of Thermal Analysis and Calorimetry
    89 rdf:type schema:Periodical
    90 sg:person.011217750457.96 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
    91 schema:familyName Moghaddaszadeh
    92 schema:givenName Navid
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011217750457.96
    94 rdf:type schema:Person
    95 sg:person.011516505301.04 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
    96 schema:familyName Mahian
    97 schema:givenName Omid
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04
    99 rdf:type schema:Person
    100 sg:person.015351030507.53 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
    101 schema:familyName Esfahani
    102 schema:givenName Javad Abolfazli
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015351030507.53
    104 rdf:type schema:Person
    105 sg:pub.10.1007/s10973-016-5868-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026573412
    106 https://doi.org/10.1007/s10973-016-5868-x
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s10973-017-6773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482349
    109 https://doi.org/10.1007/s10973-017-6773-7
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
    112 https://doi.org/10.1007/s10973-018-7070-9
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10973-018-7183-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550920
    115 https://doi.org/10.1007/s10973-018-7183-1
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10973-018-7565-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105774981
    118 https://doi.org/10.1007/s10973-018-7565-4
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10973-018-7724-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106948899
    121 https://doi.org/10.1007/s10973-018-7724-7
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0017-9310(81)90015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007538250
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.apenergy.2014.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006659553
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.apenergy.2015.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043214778
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.apenergy.2017.11.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099925359
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.apenergy.2018.01.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100821206
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.apenergy.2018.04.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103816670
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.applthermaleng.2010.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006831415
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.applthermaleng.2017.04.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085205543
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.applthermaleng.2017.06.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085968914
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.bjbas.2017.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091409317
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.cep.2017.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084064719
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.egypro.2017.12.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100735651
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.enconman.2015.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027452720
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.enconman.2016.03.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029140065
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.energy.2014.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038775814
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.icheatmasstransfer.2006.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002641430
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.icheatmasstransfer.2013.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011506078
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048571603
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085039104
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086127142
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288739
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101374933
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103208880
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.ijthermalsci.2014.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904458
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.molliq.2018.04.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103392438
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.physrep.2018.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110373958
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.physrep.2018.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110397989
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.renene.2017.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092333852
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.renene.2018.01.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100774044
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.rinp.2018.02.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101345139
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.rser.2018.03.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103266825
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.2514/3.12149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789681
    186 rdf:type schema:CreativeWork
    187 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
    188 schema:name Center for Advanced Technologies, Ferdowsi University of Mashhad, Mashhad, Iran
    189 Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111, Mashhad, Iran
    190 School of Chemical Engineering and Technology, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi, China
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...