Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Marjan Goodarzi, Davood Toghraie, Mahdi Reiszadeh, Masoud Afrand

ABSTRACT

In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles on the viscosity of ZnO–MWCNTs/engine oil (SAE 10W40) hybrid nanolubricant is presented. The experiments were repeated at volume fractions of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature range of 5–55 °C, and shear rates from 666.5 to 13,330 s−1. The viscosity of hybrid nanolubricant was measured using the Brookfield digital viscometer (CAP2000). We found that the nanofluid has a Newtonian behavior at all volume fractions and temperatures. Also, by increasing the volume fraction of nanoparticles and nanotubes at a constant temperature the nanofluid viscosity is increased. Nanofluid viscosity decreases with increasing the temperature at a constant volume fraction. More... »

PAGES

513-525

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7707-8

DOI

http://dx.doi.org/10.1007/s10973-018-7707-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106386135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ton Duc Thang University", 
          "id": "https://www.grid.ac/institutes/grid.444812.f", 
          "name": [
            "Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodarzi", 
        "givenName": "Marjan", 
        "id": "sg:person.010216132252.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216132252.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toghraie", 
        "givenName": "Davood", 
        "id": "sg:person.010752567141.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752567141.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mechanical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiszadeh", 
        "givenName": "Mahdi", 
        "id": "sg:person.010666271412.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666271412.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University of Najafabad", 
          "id": "https://www.grid.ac/institutes/grid.468905.6", 
          "name": [
            "Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afrand", 
        "givenName": "Masoud", 
        "id": "sg:person.014417160401.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417160401.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001091518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2015.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001379578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005947036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006959232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fluid.2010.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008435527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012540939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4328-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014262701", 
          "https://doi.org/10.1007/s10973-014-4328-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017849446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2016.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018109523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019277265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2009.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020820011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020919500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022655869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.05.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023434574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024399082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028581033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029789978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5650/jos.62.533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031395168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17458081003628949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032348992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032655086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041277272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042106998", 
          "https://doi.org/10.1186/1556-276x-7-360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.05.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042244122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2012.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043579772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5506-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045944537", 
          "https://doi.org/10.1007/s10973-016-5506-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916152.2014.973974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050559430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051839810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052128716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/heattransres.2014007068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068134157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083880032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6213-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028453", 
          "https://doi.org/10.1007/s10973-017-6213-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6213-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028453", 
          "https://doi.org/10.1007/s10973-017-6213-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084096661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084533140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2017.05.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085457165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.05.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085746704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2017.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086072639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2017.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090384852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6696-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091844398", 
          "https://doi.org/10.1007/s10973-017-6696-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6711-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091897151", 
          "https://doi.org/10.1007/s10973-017-6711-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6688-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092056375", 
          "https://doi.org/10.1007/s10973-017-6688-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.10.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092188563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092233708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092273021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092696770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.11.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092933845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2017.11.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092933845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.11.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092999138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2017.12.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099715455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2018.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100237198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100776626", 
          "https://doi.org/10.1007/s10973-018-7009-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2018.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101095296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2018.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101621557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2018.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101752916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104125445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2018.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105037746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105341213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2018.07.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105949941"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles on the viscosity of ZnO\u2013MWCNTs/engine oil (SAE 10W40) hybrid nanolubricant is presented. The experiments were repeated at volume fractions of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature range of 5\u201355 \u00b0C, and shear rates from 666.5 to 13,330 s\u22121. The viscosity of hybrid nanolubricant was measured using the Brookfield digital viscometer (CAP2000). We found that the nanofluid has a Newtonian behavior at all volume fractions and temperatures. Also, by increasing the volume fraction of nanoparticles and nanotubes at a constant temperature the nanofluid viscosity is increased. Nanofluid viscosity decreases with increasing the temperature at a constant volume fraction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7707-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "Experimental evaluation of dynamic viscosity of ZnO\u2013MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration", 
    "pagination": "513-525", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "255a21d77ef356a6577c12d5e00fa2b725bf446d7efe16e376483430393d8e80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7707-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106386135"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7707-8", 
      "https://app.dimensions.ai/details/publication/pub.1106386135"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7707-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7707-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7707-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7707-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7707-8'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      85 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7707-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N38023e391953469f893fcd4804df48fd
4 schema:citation sg:pub.10.1007/s10973-014-4328-8
5 sg:pub.10.1007/s10973-016-5506-7
6 sg:pub.10.1007/s10973-017-6213-8
7 sg:pub.10.1007/s10973-017-6688-3
8 sg:pub.10.1007/s10973-017-6696-3
9 sg:pub.10.1007/s10973-017-6711-8
10 sg:pub.10.1007/s10973-018-7009-1
11 sg:pub.10.1186/1556-276x-7-360
12 https://doi.org/10.1016/j.applthermaleng.2016.04.002
13 https://doi.org/10.1016/j.applthermaleng.2016.09.024
14 https://doi.org/10.1016/j.applthermaleng.2017.10.074
15 https://doi.org/10.1016/j.applthermaleng.2017.11.105
16 https://doi.org/10.1016/j.applthermaleng.2018.07.034
17 https://doi.org/10.1016/j.colsurfa.2011.08.005
18 https://doi.org/10.1016/j.enconman.2015.05.023
19 https://doi.org/10.1016/j.expthermflusci.2016.03.015
20 https://doi.org/10.1016/j.expthermflusci.2016.04.007
21 https://doi.org/10.1016/j.expthermflusci.2016.07.011
22 https://doi.org/10.1016/j.expthermflusci.2016.07.015
23 https://doi.org/10.1016/j.fluid.2010.10.015
24 https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003
25 https://doi.org/10.1016/j.icheatmasstransfer.2015.12.012
26 https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008
27 https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002
28 https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023
29 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.013
30 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.019
31 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023
32 https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021
33 https://doi.org/10.1016/j.icheatmasstransfer.2017.05.017
34 https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.065
35 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036
36 https://doi.org/10.1016/j.ijrefrig.2018.03.008
37 https://doi.org/10.1016/j.ijrefrig.2018.03.014
38 https://doi.org/10.1016/j.jmmm.2016.05.092
39 https://doi.org/10.1016/j.molliq.2017.02.037
40 https://doi.org/10.1016/j.molliq.2017.03.020
41 https://doi.org/10.1016/j.molliq.2017.04.016
42 https://doi.org/10.1016/j.molliq.2017.05.121
43 https://doi.org/10.1016/j.molliq.2017.11.135
44 https://doi.org/10.1016/j.molliq.2018.01.012
45 https://doi.org/10.1016/j.partic.2012.04.001
46 https://doi.org/10.1016/j.physa.2018.06.029
47 https://doi.org/10.1016/j.physe.2016.06.015
48 https://doi.org/10.1016/j.physe.2017.05.011
49 https://doi.org/10.1016/j.physe.2017.06.015
50 https://doi.org/10.1016/j.physe.2017.12.031
51 https://doi.org/10.1016/j.physe.2018.02.018
52 https://doi.org/10.1016/j.powtec.2017.10.025
53 https://doi.org/10.1016/j.powtec.2017.10.040
54 https://doi.org/10.1016/j.powtec.2018.05.036
55 https://doi.org/10.1016/j.powtec.2018.07.018
56 https://doi.org/10.1016/j.powtec.2018.07.086
57 https://doi.org/10.1016/j.tca.2009.03.007
58 https://doi.org/10.1080/08916152.2014.973974
59 https://doi.org/10.1080/17458081003628949
60 https://doi.org/10.1615/heattransres.2014007068
61 https://doi.org/10.5650/jos.62.533
62 schema:datePublished 2019-04
63 schema:datePublishedReg 2019-04-01
64 schema:description In this work, an experimental investigation on the effects of temperature and concentration of nanoparticles on the viscosity of ZnO–MWCNTs/engine oil (SAE 10W40) hybrid nanolubricant is presented. The experiments were repeated at volume fractions of 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, temperature range of 5–55 °C, and shear rates from 666.5 to 13,330 s−1. The viscosity of hybrid nanolubricant was measured using the Brookfield digital viscometer (CAP2000). We found that the nanofluid has a Newtonian behavior at all volume fractions and temperatures. Also, by increasing the volume fraction of nanoparticles and nanotubes at a constant temperature the nanofluid viscosity is increased. Nanofluid viscosity decreases with increasing the temperature at a constant volume fraction.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N2f5180da98d7461b9a51c248b6440b8b
69 N60ddc13d3d954da89a5b90e5ae4b9836
70 sg:journal.1294862
71 schema:name Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration
72 schema:pagination 513-525
73 schema:productId N52cce0f5afd240639519fc1c4ad73bf3
74 N77279a0af0864b95879dc15e81bebdc7
75 Nf020f54f3a1d46fe9b12c45808b2cd9e
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106386135
77 https://doi.org/10.1007/s10973-018-7707-8
78 schema:sdDatePublished 2019-04-11T13:09
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N150c20fc569f4a259b2c830cc9d98cee
81 schema:url https://link.springer.com/10.1007%2Fs10973-018-7707-8
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N150c20fc569f4a259b2c830cc9d98cee schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N216bd1f0e2b84fd1805519a3ede5038a schema:name Department of Mechanical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
88 rdf:type schema:Organization
89 N2f5180da98d7461b9a51c248b6440b8b schema:volumeNumber 136
90 rdf:type schema:PublicationVolume
91 N367440221a8946108e373f07eb846f96 rdf:first sg:person.010752567141.94
92 rdf:rest Na5adb25e7a3d4cccae34357af7da504b
93 N38023e391953469f893fcd4804df48fd rdf:first sg:person.010216132252.32
94 rdf:rest N367440221a8946108e373f07eb846f96
95 N52cce0f5afd240639519fc1c4ad73bf3 schema:name doi
96 schema:value 10.1007/s10973-018-7707-8
97 rdf:type schema:PropertyValue
98 N60ddc13d3d954da89a5b90e5ae4b9836 schema:issueNumber 2
99 rdf:type schema:PublicationIssue
100 N668a1c92eb5040a982f6cd98cbc8398f rdf:first sg:person.014417160401.52
101 rdf:rest rdf:nil
102 N77279a0af0864b95879dc15e81bebdc7 schema:name dimensions_id
103 schema:value pub.1106386135
104 rdf:type schema:PropertyValue
105 N7bced5b42220472aa766aeff923f3400 schema:name Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
106 rdf:type schema:Organization
107 Na5adb25e7a3d4cccae34357af7da504b rdf:first sg:person.010666271412.02
108 rdf:rest N668a1c92eb5040a982f6cd98cbc8398f
109 Nf020f54f3a1d46fe9b12c45808b2cd9e schema:name readcube_id
110 schema:value 255a21d77ef356a6577c12d5e00fa2b725bf446d7efe16e376483430393d8e80
111 rdf:type schema:PropertyValue
112 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
113 schema:name Chemical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Chemistry (incl. Structural)
117 rdf:type schema:DefinedTerm
118 sg:journal.1294862 schema:issn 1388-6150
119 1572-8943
120 schema:name Journal of Thermal Analysis and Calorimetry
121 rdf:type schema:Periodical
122 sg:person.010216132252.32 schema:affiliation https://www.grid.ac/institutes/grid.444812.f
123 schema:familyName Goodarzi
124 schema:givenName Marjan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216132252.32
126 rdf:type schema:Person
127 sg:person.010666271412.02 schema:affiliation N216bd1f0e2b84fd1805519a3ede5038a
128 schema:familyName Reiszadeh
129 schema:givenName Mahdi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666271412.02
131 rdf:type schema:Person
132 sg:person.010752567141.94 schema:affiliation N7bced5b42220472aa766aeff923f3400
133 schema:familyName Toghraie
134 schema:givenName Davood
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752567141.94
136 rdf:type schema:Person
137 sg:person.014417160401.52 schema:affiliation https://www.grid.ac/institutes/grid.468905.6
138 schema:familyName Afrand
139 schema:givenName Masoud
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014417160401.52
141 rdf:type schema:Person
142 sg:pub.10.1007/s10973-014-4328-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262701
143 https://doi.org/10.1007/s10973-014-4328-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10973-016-5506-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045944537
146 https://doi.org/10.1007/s10973-016-5506-7
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10973-017-6213-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028453
149 https://doi.org/10.1007/s10973-017-6213-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10973-017-6688-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092056375
152 https://doi.org/10.1007/s10973-017-6688-3
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10973-017-6696-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091844398
155 https://doi.org/10.1007/s10973-017-6696-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10973-017-6711-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091897151
158 https://doi.org/10.1007/s10973-017-6711-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10973-018-7009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100776626
161 https://doi.org/10.1007/s10973-018-7009-1
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1556-276x-7-360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106998
164 https://doi.org/10.1186/1556-276x-7-360
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.applthermaleng.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005947036
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.applthermaleng.2016.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006959232
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.applthermaleng.2017.10.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092188563
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.applthermaleng.2017.11.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092933845
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.applthermaleng.2018.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105949941
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.colsurfa.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012540939
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.enconman.2015.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042244122
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.expthermflusci.2016.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022655869
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.expthermflusci.2016.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017849446
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.expthermflusci.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024399082
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.expthermflusci.2016.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029789978
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.fluid.2010.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008435527
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020919500
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.icheatmasstransfer.2015.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001379578
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.icheatmasstransfer.2016.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052128716
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.icheatmasstransfer.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041277272
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.icheatmasstransfer.2016.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019277265
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020820011
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032655086
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028581033
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051839810
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.icheatmasstransfer.2017.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090384852
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001091518
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092233708
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ijrefrig.2018.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101621557
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ijrefrig.2018.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101752916
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jmmm.2016.05.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023434574
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.molliq.2017.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083880032
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.molliq.2017.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084096661
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.molliq.2017.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084533140
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.molliq.2017.05.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085746704
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.molliq.2017.11.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092999138
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.molliq.2018.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100237198
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.partic.2012.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043579772
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.physa.2018.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105037746
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.physe.2016.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018109523
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.physe.2017.05.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085457165
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.physe.2017.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072639
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.physe.2017.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099715455
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.physe.2018.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101095296
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.powtec.2017.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092273021
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.powtec.2017.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092696770
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.powtec.2018.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104125445
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.powtec.2018.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105341213
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.powtec.2018.07.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810233
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.tca.2009.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698084
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1080/08916152.2014.973974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050559430
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1080/17458081003628949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032348992
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1615/heattransres.2014007068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068134157
263 rdf:type schema:CreativeWork
264 https://doi.org/10.5650/jos.62.533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031395168
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.444812.f schema:alternateName Ton Duc Thang University
267 schema:name Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.468905.6 schema:alternateName Islamic Azad University of Najafabad
270 schema:name Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...