Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Abazar Abadeh, Mohammad Passandideh-Fard, Mohammad Javad Maghrebi, Majid Mohammadi

ABSTRACT

In this paper, the effect of different parameters on Fe3O4/water nanofluid preparation characteristics is investigated experimentally. Two criteria, stability and magnetism, are employed to characterize prepared ferrofluids. Dynamic light scattering methods (DLS) distribution and transmission electron microscopy (TEM) images are applied in nanoparticle size investigation. Two-step preparation method is used to prepare the ferrofluid samples. Zeta potential and vibrating sample magnetometer (VSM) methods are used to study the stability and magnetism characteristics of prepared ferrofluid samples, respectively. The effect of six parameters (surfactant material, surfactant mass, heater stirring speed, heater stirring time, pH, initial sonication time and final sonication time) with three levels and one parameter (surfactant material) with six levels on the stability and magnetization is considered. The Taguchi method is applied in design of experiments, and 18 samples are prepared. The results show that the effective parameters on the stability of the prepared ferrofluid as their importance are: surfactant material, pH number, initial sonication time, surfactant mass, final sonication time, heater stirring speed and heater stirring time, respectively. According to magnetization viewpoint, the order of importance for effective parameters is: surfactant material, surfactant mass, pH number, final sonication time, heater stirring time, initial sonication time and heater stirring speed, respectively. More... »

PAGES

1323-1334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7662-4

DOI

http://dx.doi.org/10.1007/s10973-018-7662-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106893726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.Box 9177948944, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abadeh", 
        "givenName": "Abazar", 
        "id": "sg:person.011661242530.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011661242530.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.Box 9177948944, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Passandideh-Fard", 
        "givenName": "Mohammad", 
        "id": "sg:person.015715577165.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715577165.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.Box 9177948944, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maghrebi", 
        "givenName": "Mohammad Javad", 
        "id": "sg:person.013250216021.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250216021.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ferdowsi University of Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411301.6", 
          "name": [
            "Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.Box 9177948944, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohammadi", 
        "givenName": "Majid", 
        "id": "sg:person.012456623130.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456623130.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0360-5442(02)00189-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000576020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000816193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2012.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002828812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004721374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007145349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2009.11.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007801778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008033296", 
          "https://doi.org/10.1007/3-540-45646-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008033296", 
          "https://doi.org/10.1007/3-540-45646-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fluid.2010.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008435527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016566911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jbise.2012.512089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016727337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018733211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2012.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020144758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2007.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021343347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026025479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027372315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01932690701522293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031544683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035626215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2005.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036733953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.11.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037541329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/435873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037619255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpart.2007.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/htj.21043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038953882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/6717624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040694486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2014.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040999884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-5113-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041976216", 
          "https://doi.org/10.1007/s10973-015-5113-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2010.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043686033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.03.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046276796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2010.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046300730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2007.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047976471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2004.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050019041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2015.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050032386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2013.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050132515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00614-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00614-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050720928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053176333", 
          "https://doi.org/10.1186/1556-276x-6-230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0609885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056065414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0609885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056065414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1341218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/proc-457-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067937609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157341312801784384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069212978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9790/1684-0926369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074171099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2018.06.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104901580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105008470", 
          "https://doi.org/10.1007/s10973-018-7478-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7478-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105008470", 
          "https://doi.org/10.1007/s10973-018-7478-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "In this paper, the effect of different parameters on Fe3O4/water nanofluid preparation characteristics is investigated experimentally. Two criteria, stability and magnetism, are employed to characterize prepared ferrofluids. Dynamic light scattering methods (DLS) distribution and transmission electron microscopy (TEM) images are applied in nanoparticle size investigation. Two-step preparation method is used to prepare the ferrofluid samples. Zeta potential and vibrating sample magnetometer (VSM) methods are used to study the stability and magnetism characteristics of prepared ferrofluid samples, respectively. The effect of six parameters (surfactant material, surfactant mass, heater stirring speed, heater stirring time, pH, initial sonication time and final sonication time) with three levels and one parameter (surfactant material) with six levels on the stability and magnetization is considered. The Taguchi method is applied in design of experiments, and 18 samples are prepared. The results show that the effective parameters on the stability of the prepared ferrofluid as their importance are: surfactant material, pH number, initial sonication time, surfactant mass, final sonication time, heater stirring speed and heater stirring time, respectively. According to magnetization viewpoint, the order of importance for effective parameters is: surfactant material, surfactant mass, pH number, final sonication time, heater stirring time, initial sonication time and heater stirring speed, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7662-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method", 
    "pagination": "1323-1334", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3203805ee0621452ba0d1c96e5027719767d2c9b73d80b2bd314e616a872b892"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7662-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106893726"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7662-4", 
      "https://app.dimensions.ai/details/publication/pub.1106893726"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7662-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7662-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7662-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7662-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7662-4'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7662-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ncaaff503318d4503a0a86476351954bd
4 schema:citation sg:pub.10.1007/3-540-45646-5
5 sg:pub.10.1007/s10973-015-5113-z
6 sg:pub.10.1007/s10973-018-7478-2
7 sg:pub.10.1186/1556-276x-6-230
8 https://doi.org/10.1002/htj.21043
9 https://doi.org/10.1016/j.apenergy.2013.10.065
10 https://doi.org/10.1016/j.applthermaleng.2012.05.036
11 https://doi.org/10.1016/j.apsusc.2007.03.053
12 https://doi.org/10.1016/j.biomaterials.2007.07.024
13 https://doi.org/10.1016/j.cap.2007.12.008
14 https://doi.org/10.1016/j.colsurfa.2009.11.044
15 https://doi.org/10.1016/j.cpart.2007.01.015
16 https://doi.org/10.1016/j.enbuild.2014.07.029
17 https://doi.org/10.1016/j.enbuild.2016.01.041
18 https://doi.org/10.1016/j.energy.2018.06.089
19 https://doi.org/10.1016/j.expthermflusci.2005.03.021
20 https://doi.org/10.1016/j.expthermflusci.2015.07.002
21 https://doi.org/10.1016/j.fluid.2010.10.015
22 https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009
23 https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
24 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029
25 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
26 https://doi.org/10.1016/j.jcis.2004.04.026
27 https://doi.org/10.1016/j.jmmm.2006.11.158
28 https://doi.org/10.1016/j.jmmm.2010.09.009
29 https://doi.org/10.1016/j.jmmm.2012.09.042
30 https://doi.org/10.1016/j.jtice.2015.10.008
31 https://doi.org/10.1016/j.msec.2010.04.016
32 https://doi.org/10.1016/j.partic.2010.03.001
33 https://doi.org/10.1016/j.powtec.2007.11.020
34 https://doi.org/10.1016/s0304-8853(02)00614-5
35 https://doi.org/10.1016/s0360-5442(02)00189-5
36 https://doi.org/10.1021/jp0609885
37 https://doi.org/10.1063/1.1341218
38 https://doi.org/10.1080/01932690701522293
39 https://doi.org/10.1155/2012/435873
40 https://doi.org/10.1155/2016/6717624
41 https://doi.org/10.1557/proc-457-3
42 https://doi.org/10.2174/157341312801784384
43 https://doi.org/10.4236/jbise.2012.512089
44 https://doi.org/10.9790/1684-0926369
45 schema:datePublished 2019-01
46 schema:datePublishedReg 2019-01-01
47 schema:description In this paper, the effect of different parameters on Fe3O4/water nanofluid preparation characteristics is investigated experimentally. Two criteria, stability and magnetism, are employed to characterize prepared ferrofluids. Dynamic light scattering methods (DLS) distribution and transmission electron microscopy (TEM) images are applied in nanoparticle size investigation. Two-step preparation method is used to prepare the ferrofluid samples. Zeta potential and vibrating sample magnetometer (VSM) methods are used to study the stability and magnetism characteristics of prepared ferrofluid samples, respectively. The effect of six parameters (surfactant material, surfactant mass, heater stirring speed, heater stirring time, pH, initial sonication time and final sonication time) with three levels and one parameter (surfactant material) with six levels on the stability and magnetization is considered. The Taguchi method is applied in design of experiments, and 18 samples are prepared. The results show that the effective parameters on the stability of the prepared ferrofluid as their importance are: surfactant material, pH number, initial sonication time, surfactant mass, final sonication time, heater stirring speed and heater stirring time, respectively. According to magnetization viewpoint, the order of importance for effective parameters is: surfactant material, surfactant mass, pH number, final sonication time, heater stirring time, initial sonication time and heater stirring speed, respectively.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf Nbc39b1589233473ebbcfcce5b0daa115
52 Ne49bff71f40741cdb388b8a7c699be0c
53 sg:journal.1294862
54 schema:name Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method
55 schema:pagination 1323-1334
56 schema:productId N6fc7d96d63714c67bae26c1d9de52cbd
57 N8109eea95b0e4f18a7b0e0e09e36abd8
58 Nc5592df2bc3a405da92c75cb10d1cdc1
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893726
60 https://doi.org/10.1007/s10973-018-7662-4
61 schema:sdDatePublished 2019-04-11T09:11
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8411764a807b49a392c02bcd1a81b9d2
64 schema:url https://link.springer.com/10.1007%2Fs10973-018-7662-4
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N5a7f46cad8bb475ea52d72d757e350c7 rdf:first sg:person.013250216021.18
69 rdf:rest N6824562242fb4fbe8c5c6142c7cf7355
70 N6824562242fb4fbe8c5c6142c7cf7355 rdf:first sg:person.012456623130.25
71 rdf:rest rdf:nil
72 N6fc7d96d63714c67bae26c1d9de52cbd schema:name doi
73 schema:value 10.1007/s10973-018-7662-4
74 rdf:type schema:PropertyValue
75 N8109eea95b0e4f18a7b0e0e09e36abd8 schema:name readcube_id
76 schema:value 3203805ee0621452ba0d1c96e5027719767d2c9b73d80b2bd314e616a872b892
77 rdf:type schema:PropertyValue
78 N8411764a807b49a392c02bcd1a81b9d2 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nbc39b1589233473ebbcfcce5b0daa115 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 Nc343e7a1cf7949fe935a0300bd8ca8fb rdf:first sg:person.015715577165.70
83 rdf:rest N5a7f46cad8bb475ea52d72d757e350c7
84 Nc5592df2bc3a405da92c75cb10d1cdc1 schema:name dimensions_id
85 schema:value pub.1106893726
86 rdf:type schema:PropertyValue
87 Ncaaff503318d4503a0a86476351954bd rdf:first sg:person.011661242530.32
88 rdf:rest Nc343e7a1cf7949fe935a0300bd8ca8fb
89 Ne49bff71f40741cdb388b8a7c699be0c schema:volumeNumber 135
90 rdf:type schema:PublicationVolume
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Chemistry (incl. Structural)
96 rdf:type schema:DefinedTerm
97 sg:journal.1294862 schema:issn 1388-6150
98 1572-8943
99 schema:name Journal of Thermal Analysis and Calorimetry
100 rdf:type schema:Periodical
101 sg:person.011661242530.32 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
102 schema:familyName Abadeh
103 schema:givenName Abazar
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011661242530.32
105 rdf:type schema:Person
106 sg:person.012456623130.25 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
107 schema:familyName Mohammadi
108 schema:givenName Majid
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012456623130.25
110 rdf:type schema:Person
111 sg:person.013250216021.18 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
112 schema:familyName Maghrebi
113 schema:givenName Mohammad Javad
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013250216021.18
115 rdf:type schema:Person
116 sg:person.015715577165.70 schema:affiliation https://www.grid.ac/institutes/grid.411301.6
117 schema:familyName Passandideh-Fard
118 schema:givenName Mohammad
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715577165.70
120 rdf:type schema:Person
121 sg:pub.10.1007/3-540-45646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008033296
122 https://doi.org/10.1007/3-540-45646-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10973-015-5113-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041976216
125 https://doi.org/10.1007/s10973-015-5113-z
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10973-018-7478-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105008470
128 https://doi.org/10.1007/s10973-018-7478-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1556-276x-6-230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053176333
131 https://doi.org/10.1186/1556-276x-6-230
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/htj.21043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038953882
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apenergy.2013.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050132515
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.applthermaleng.2012.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020144758
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.apsusc.2007.03.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046276796
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.biomaterials.2007.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021343347
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cap.2007.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047976471
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.colsurfa.2009.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801778
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cpart.2007.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698594
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.enbuild.2014.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040999884
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.enbuild.2016.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016566911
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.energy.2018.06.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104901580
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.expthermflusci.2005.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036733953
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.expthermflusci.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004721374
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.fluid.2010.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008435527
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatfluidflow.2016.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000816193
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027372315
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026025479
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018733211
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jcis.2004.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050019041
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jmmm.2006.11.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037541329
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jmmm.2010.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043686033
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jmmm.2012.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002828812
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jtice.2015.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050032386
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.msec.2010.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046300730
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.partic.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035626215
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.powtec.2007.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007145349
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0304-8853(02)00614-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050720928
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0360-5442(02)00189-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000576020
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/jp0609885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056065414
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.1341218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696715
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01932690701522293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031544683
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1155/2012/435873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037619255
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1155/2016/6717624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040694486
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1557/proc-457-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067937609
200 rdf:type schema:CreativeWork
201 https://doi.org/10.2174/157341312801784384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069212978
202 rdf:type schema:CreativeWork
203 https://doi.org/10.4236/jbise.2012.512089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016727337
204 rdf:type schema:CreativeWork
205 https://doi.org/10.9790/1684-0926369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074171099
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.411301.6 schema:alternateName Ferdowsi University of Mashhad
208 schema:name Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.Box 9177948944, Mashhad, Iran
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...