Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Ahmad Hajatzadeh Pordanjani, Seyed Masoud Vahedi, Farhad Rikhtegar, Somchai Wongwises

ABSTRACT

This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications. More... »

PAGES

1031-1045

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7652-6

DOI

http://dx.doi.org/10.1007/s10973-018-7652-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106292542


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shahrekord University", 
          "id": "https://www.grid.ac/institutes/grid.440800.8", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pordanjani", 
        "givenName": "Ahmad Hajatzadeh", 
        "id": "sg:person.015260720771.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260720771.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Iranian Oil Company (Iran)", 
          "id": "https://www.grid.ac/institutes/grid.419140.9", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Semnan University, P.O.B. 35131-19111, Semnan, Iran", 
            "Gas Refining Technology Group, Gas Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vahedi", 
        "givenName": "Seyed Masoud", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rikhtegar", 
        "givenName": "Farhad", 
        "id": "sg:person.0704000260.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704000260.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001193334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001844012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.02.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001918955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.12.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002224197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.09.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005299228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407780600619907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006970207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2014.10.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008204608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008272017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2013.851560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008574692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.05.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008689743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t5003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009163171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.04.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009393770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009751605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(83)90335-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(83)90335-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2016.1173483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016434256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017310874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017561151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018613943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2015.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t4907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021401179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(04)00051-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023657044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2016.06.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024051647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2016.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028191973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2006.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029038802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029261064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030054284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030977988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031444494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033732877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/104077802317221447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034606932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2014.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036770961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2012.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038104083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039386054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.desal.2016.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040170126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(93)90025-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043202128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-7825(93)90025-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043202128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2009.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043397207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1290-0729(00)01213-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043882795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044727252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.10.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050753585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/specialtopicsrevporousmedia.v6.i4.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068150866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204463", 
          "https://doi.org/10.1007/s10973-017-6102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074204463", 
          "https://doi.org/10.1007/s10973-017-6102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2017.03.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084058538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.02.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084102931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085396666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091419224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091880996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091906157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6773-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482349", 
          "https://doi.org/10.1007/s10973-017-6773-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6787-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092593348", 
          "https://doi.org/10.1007/s10973-017-6787-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jmech.2018.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100914794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7183-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550920", 
          "https://doi.org/10.1007/s10973-018-7183-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7183-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550920", 
          "https://doi.org/10.1007/s10973-018-7183-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7183-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101550920", 
          "https://doi.org/10.1007/s10973-018-7183-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101699925", 
          "https://doi.org/10.1007/s10973-018-7219-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7219-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101699925", 
          "https://doi.org/10.1007/s10973-018-7219-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103846000", 
          "https://doi.org/10.1007/s10973-018-7339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103846000", 
          "https://doi.org/10.1007/s10973-018-7339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103846000", 
          "https://doi.org/10.1007/s10973-018-7339-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7339-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103846000", 
          "https://doi.org/10.1007/s10973-018-7339-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7652-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology", 
    "pagination": "1031-1045", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa7b5bbfbdd430ceb770dad3efdc88405aed7f8c54bc042b5569b8e6951ef145"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7652-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106292542"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7652-6", 
      "https://app.dimensions.ai/details/publication/pub.1106292542"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47997_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7652-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7652-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7652-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7652-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7652-6'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      85 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7652-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nf062e5a1611c4d8fb068b6c15cad6ced
4 schema:citation sg:pub.10.1007/s10973-017-6102-1
5 sg:pub.10.1007/s10973-017-6773-7
6 sg:pub.10.1007/s10973-017-6787-1
7 sg:pub.10.1007/s10973-018-7070-9
8 sg:pub.10.1007/s10973-018-7183-1
9 sg:pub.10.1007/s10973-018-7219-6
10 sg:pub.10.1007/s10973-018-7339-z
11 https://doi.org/10.1016/0022-0248(83)90335-4
12 https://doi.org/10.1016/0045-7825(93)90025-s
13 https://doi.org/10.1016/j.apenergy.2017.03.057
14 https://doi.org/10.1016/j.apm.2014.10.049
15 https://doi.org/10.1016/j.apm.2016.06.055
16 https://doi.org/10.1016/j.applthermaleng.2015.10.136
17 https://doi.org/10.1016/j.camwa.2015.07.020
18 https://doi.org/10.1016/j.desal.2016.05.026
19 https://doi.org/10.1016/j.enconman.2015.07.019
20 https://doi.org/10.1016/j.energy.2015.05.056
21 https://doi.org/10.1016/j.icheatmasstransfer.2012.01.016
22 https://doi.org/10.1016/j.ijheatfluidflow.2005.11.003
23 https://doi.org/10.1016/j.ijheatfluidflow.2009.02.001
24 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
25 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030
26 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.040
27 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.049
28 https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.057
29 https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045
30 https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.019
31 https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.045
32 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.050
33 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.070
34 https://doi.org/10.1016/j.ijthermalsci.2006.07.008
35 https://doi.org/10.1016/j.ijthermalsci.2007.02.003
36 https://doi.org/10.1016/j.ijthermalsci.2009.09.002
37 https://doi.org/10.1016/j.ijthermalsci.2010.04.014
38 https://doi.org/10.1016/j.ijthermalsci.2010.07.006
39 https://doi.org/10.1016/j.ijthermalsci.2010.10.015
40 https://doi.org/10.1016/j.ijthermalsci.2011.04.010
41 https://doi.org/10.1016/j.ijthermalsci.2012.12.002
42 https://doi.org/10.1016/j.ijthermalsci.2015.08.003
43 https://doi.org/10.1016/j.ijthermalsci.2016.09.001
44 https://doi.org/10.1016/j.jmmm.2014.08.004
45 https://doi.org/10.1016/j.jmmm.2016.09.123
46 https://doi.org/10.1016/j.molliq.2015.12.034
47 https://doi.org/10.1016/j.molliq.2016.02.093
48 https://doi.org/10.1016/j.molliq.2016.04.058
49 https://doi.org/10.1016/j.powtec.2017.02.065
50 https://doi.org/10.1016/j.rser.2012.12.039
51 https://doi.org/10.1016/s0735-1933(04)00051-x
52 https://doi.org/10.1016/s1290-0729(00)01213-8
53 https://doi.org/10.1017/jmech.2018.1
54 https://doi.org/10.1063/1.1700493
55 https://doi.org/10.1080/104077802317221447
56 https://doi.org/10.1080/10407780600619907
57 https://doi.org/10.1080/10407782.2013.851560
58 https://doi.org/10.1080/10407782.2016.1173483
59 https://doi.org/10.1615/specialtopicsrevporousmedia.v6.i4.40
60 https://doi.org/10.2514/1.t4907
61 https://doi.org/10.2514/1.t5003
62 schema:datePublished 2019-01
63 schema:datePublishedReg 2019-01-01
64 schema:description This article studies buoyancy-driven natural convection of a nanofluid affected by a magnetic field within a square enclosure with an individual conductive pin fin. The effects of electromagnetic forces, thermal conductivity, and inclination angle of pin fin were investigated using non-dimensional parameters. An extensive sensitivity analysis was conducted seeking an optimal heat transfer setting. The novelty of this work lies in including different contributing factors in heat transfer analysis, rigorous analysis of design parameters, and comprehensive mathematical analysis of solution domain for optimization. Results showed that magnetic strength diminished the heat transfer efficacy, while higher relative thermal conductivity of pin fin improved it. Based on the problem settings, we also obtained the relative conductivity value in which the heat transfer is optimal. Higher sensitivity of heat transfer was, though, noticed for both magnetic strength and fin thermal conductivity in comparison to fin inclination angle. Further studies, specifically with realistic geometrical configurations and heat transfer settings, are urged to translate current findings to industrial applications.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N3fd842a3258c4b0fbc2648650a7f9146
69 N5963ff44b5d646f0834ae01ebce9f546
70 sg:journal.1294862
71 schema:name Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology
72 schema:pagination 1031-1045
73 schema:productId N1bb7a3f6f0224295bbccc2008fdcdf2c
74 N95692377d51341f696b1735a7cc746f4
75 Na735d3dc561444f48b9b916823b8be7f
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106292542
77 https://doi.org/10.1007/s10973-018-7652-6
78 schema:sdDatePublished 2019-04-11T09:14
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N2ed4557c539f47ce856e588acbaf24f7
81 schema:url https://link.springer.com/10.1007%2Fs10973-018-7652-6
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1bb7a3f6f0224295bbccc2008fdcdf2c schema:name doi
86 schema:value 10.1007/s10973-018-7652-6
87 rdf:type schema:PropertyValue
88 N2ed4557c539f47ce856e588acbaf24f7 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N348dca816d1945f78db48c89001045b1 rdf:first sg:person.012267021412.00
91 rdf:rest rdf:nil
92 N3fd842a3258c4b0fbc2648650a7f9146 schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 N47401cff999547fa81d863302276752b schema:affiliation https://www.grid.ac/institutes/grid.419140.9
95 schema:familyName Vahedi
96 schema:givenName Seyed Masoud
97 rdf:type schema:Person
98 N5963ff44b5d646f0834ae01ebce9f546 schema:volumeNumber 135
99 rdf:type schema:PublicationVolume
100 N95692377d51341f696b1735a7cc746f4 schema:name readcube_id
101 schema:value fa7b5bbfbdd430ceb770dad3efdc88405aed7f8c54bc042b5569b8e6951ef145
102 rdf:type schema:PropertyValue
103 Na735d3dc561444f48b9b916823b8be7f schema:name dimensions_id
104 schema:value pub.1106292542
105 rdf:type schema:PropertyValue
106 Nc77d3ec7942348429a003860022bdd43 rdf:first sg:person.0704000260.59
107 rdf:rest N348dca816d1945f78db48c89001045b1
108 Ne1664b26939841109df86fda5fa99551 rdf:first N47401cff999547fa81d863302276752b
109 rdf:rest Nc77d3ec7942348429a003860022bdd43
110 Nf062e5a1611c4d8fb068b6c15cad6ced rdf:first sg:person.015260720771.32
111 rdf:rest Ne1664b26939841109df86fda5fa99551
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
116 schema:name Interdisciplinary Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1294862 schema:issn 1388-6150
119 1572-8943
120 schema:name Journal of Thermal Analysis and Calorimetry
121 rdf:type schema:Periodical
122 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
123 schema:familyName Wongwises
124 schema:givenName Somchai
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
126 rdf:type schema:Person
127 sg:person.015260720771.32 schema:affiliation https://www.grid.ac/institutes/grid.440800.8
128 schema:familyName Pordanjani
129 schema:givenName Ahmad Hajatzadeh
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015260720771.32
131 rdf:type schema:Person
132 sg:person.0704000260.59 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
133 schema:familyName Rikhtegar
134 schema:givenName Farhad
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704000260.59
136 rdf:type schema:Person
137 sg:pub.10.1007/s10973-017-6102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074204463
138 https://doi.org/10.1007/s10973-017-6102-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10973-017-6773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482349
141 https://doi.org/10.1007/s10973-017-6773-7
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10973-017-6787-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092593348
144 https://doi.org/10.1007/s10973-017-6787-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
147 https://doi.org/10.1007/s10973-018-7070-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10973-018-7183-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101550920
150 https://doi.org/10.1007/s10973-018-7183-1
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10973-018-7219-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101699925
153 https://doi.org/10.1007/s10973-018-7219-6
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10973-018-7339-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103846000
156 https://doi.org/10.1007/s10973-018-7339-z
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0022-0248(83)90335-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703700
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0045-7825(93)90025-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1043202128
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.apenergy.2017.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084058538
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.apm.2014.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008204608
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.apm.2016.06.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024051647
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.applthermaleng.2015.10.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050753585
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.camwa.2015.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535042
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.desal.2016.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040170126
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.enconman.2015.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017561151
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.energy.2015.05.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008689743
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.icheatmasstransfer.2012.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001844012
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ijheatfluidflow.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039386054
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijheatfluidflow.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043397207
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788927
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009751605
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030054284
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008272017
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018613943
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030977988
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085396666
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091419224
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091880996
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091906157
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.ijthermalsci.2006.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029038802
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.ijthermalsci.2007.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033732877
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.ijthermalsci.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001193334
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.ijthermalsci.2010.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044727252
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.ijthermalsci.2010.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031444494
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.ijthermalsci.2010.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529891
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.ijthermalsci.2011.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029261064
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.ijthermalsci.2012.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038104083
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.ijthermalsci.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671374
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.ijthermalsci.2016.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028191973
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.jmmm.2014.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036770961
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.jmmm.2016.09.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005299228
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.molliq.2015.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017310874
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.molliq.2016.02.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001918955
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.molliq.2016.04.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009393770
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.powtec.2017.02.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084102931
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.rser.2012.12.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002224197
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/s0735-1933(04)00051-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023657044
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/s1290-0729(00)01213-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043882795
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1017/jmech.2018.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100914794
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1063/1.1700493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770936
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1080/104077802317221447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034606932
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1080/10407780600619907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970207
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1080/10407782.2013.851560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008574692
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1080/10407782.2016.1173483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016434256
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1615/specialtopicsrevporousmedia.v6.i4.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068150866
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2514/1.t4907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021401179
257 rdf:type schema:CreativeWork
258 https://doi.org/10.2514/1.t5003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009163171
259 rdf:type schema:CreativeWork
260 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
261 schema:name Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
264 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, Thailand
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.419140.9 schema:alternateName National Iranian Oil Company (Iran)
267 schema:name Department of Mechanical Engineering, Faculty of Engineering, Semnan University, P.O.B. 35131-19111, Semnan, Iran
268 Gas Refining Technology Group, Gas Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.440800.8 schema:alternateName Shahrekord University
271 schema:name Department of Mechanical Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...