Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Yuan Ma, Rasul Mohebbi, M. M. Rashidi, O. Manca, Zhigang Yang

ABSTRACT

Lattice Boltzmann method (LBM) was carried out to investigate the effects of magnetic field and nanofluid on the natural convection heat transfer in a baffled U-shaped enclosure. The combination of different specifications of the baffle, LBM, nanofluid and magnetic field is the main innovation in the present study. In order to consider the effect of Brownian motion on the thermal conductivity, Koo–Kleinstreuer–Li model is used to define thermal conductivity and viscosity of nanofluid. Effects of Rayleigh number, Hartmann number, nanoparticle volume fraction, height and position of the baffle on the fluid flow and heat transfer characteristics have been examined. It was found that raising the Rayleigh number and nanoparticle solid volume fraction leads to increase the average Nusselt number irrespective of the position of the hot obstacle. However, the heat transfer rate is suppressed by the magnetic field. The heat transfer enhancement by introducing nanofluid decreases as increasing Rayleigh number, but it increases as increasing the Hartmann number. Moreover, the maximum heat transfer rate was observed when the enclosure equipped with a baffle with (s, h) = (0.2, 0.3) or (0.4, 0.3). More... »

PAGES

3197-3213

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7518-y

DOI

http://dx.doi.org/10.1007/s10973-018-7518-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105549769


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Automotive Wind Tunnel Center, Tongji University, No. 4800, Cao\u2019an Road, 201804, Shanghai, China", 
            "Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, No. 4800, Cao\u2019an Road, 201804, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yuan", 
        "id": "sg:person.014215404470.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215404470.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Damghan University", 
          "id": "https://www.grid.ac/institutes/grid.411973.9", 
          "name": [
            "School of Engineering, Damghan University, P.O. Box: 3671641167, Damghan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohebbi", 
        "givenName": "Rasul", 
        "id": "sg:person.013643253601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643253601.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "M. M.", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Second University of Naples", 
          "id": "https://www.grid.ac/institutes/grid.9841.4", 
          "name": [
            "Dipartimento di Ingegneria, Universit\u00e0 degli Studi della Campania \u201cLuigi Vanvitelli\u201d, 81031, Aversa, (CE), Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manca", 
        "givenName": "O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Shanghai Automotive Wind Tunnel Center, Tongji University, No. 4800, Cao\u2019an Road, 201804, Shanghai, China", 
            "Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, No. 4800, Cao\u2019an Road, 201804, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhigang", 
        "id": "sg:person.010253554005.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253554005.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.molliq.2013.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000090461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2016.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000907609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001176146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2014.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002369511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004863366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2015.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2013.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007597630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008274609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjce.5450850617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008884674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015572845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2014.965017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018869466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2013.07.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024700890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025242868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2015.03.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026291215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2017.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026719993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028378373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2015.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028853347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029261064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029406611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029808003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2012.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031587915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2016.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032832232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033738638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033817704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4208/cicp.060414.220115a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035268498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2015.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036178089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2012.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039850190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09615539810226094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043006853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044727252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.868766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051420693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1756684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057815732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.94.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.026701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.053312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.053312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.025901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.025901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/17/6/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtice.2017.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083414669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091505763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092545770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.11.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092658694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4993866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100106506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2018.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100247949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5022060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101299357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183118500304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101640684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2018.04.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103254575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104265222"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Lattice Boltzmann method (LBM) was carried out to investigate the effects of magnetic field and nanofluid on the natural convection heat transfer in a baffled U-shaped enclosure. The combination of different specifications of the baffle, LBM, nanofluid and magnetic field is the main innovation in the present study. In order to consider the effect of Brownian motion on the thermal conductivity, Koo\u2013Kleinstreuer\u2013Li model is used to define thermal conductivity and viscosity of nanofluid. Effects of Rayleigh number, Hartmann number, nanoparticle volume fraction, height and position of the baffle on the fluid flow and heat transfer characteristics have been examined. It was found that raising the Rayleigh number and nanoparticle solid volume fraction leads to increase the average Nusselt number irrespective of the position of the hot obstacle. However, the heat transfer rate is suppressed by the magnetic field. The heat transfer enhancement by introducing nanofluid decreases as increasing Rayleigh number, but it increases as increasing the Hartmann number. Moreover, the maximum heat transfer rate was observed when the enclosure equipped with a baffle with (s, h) = (0.2, 0.3) or (0.4, 0.3).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7518-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method", 
    "pagination": "3197-3213", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4be15c46fb481984c4a7e6006f205ddb672b341e63344e8a93d36bad8972ffa0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7518-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105549769"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7518-y", 
      "https://app.dimensions.ai/details/publication/pub.1105549769"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7518-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7518-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7518-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7518-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7518-y'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      74 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7518-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N36f1109048aa425dbac5511d82399ae1
4 schema:citation https://doi.org/10.1002/cjce.5450850617
5 https://doi.org/10.1016/j.cep.2018.01.004
6 https://doi.org/10.1016/j.compfluid.2012.11.014
7 https://doi.org/10.1016/j.compfluid.2015.09.004
8 https://doi.org/10.1016/j.energy.2013.07.070
9 https://doi.org/10.1016/j.icheatmasstransfer.2012.05.020
10 https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.017
11 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029
12 https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.053
13 https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014
14 https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.037
15 https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.031
16 https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.108
17 https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.108
18 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063
19 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.064
20 https://doi.org/10.1016/j.ijthermalsci.2010.04.014
21 https://doi.org/10.1016/j.ijthermalsci.2011.04.010
22 https://doi.org/10.1016/j.ijthermalsci.2012.01.002
23 https://doi.org/10.1016/j.jaerosci.2015.11.006
24 https://doi.org/10.1016/j.jaerosci.2016.09.002
25 https://doi.org/10.1016/j.jmmm.2017.01.016
26 https://doi.org/10.1016/j.jtice.2014.03.010
27 https://doi.org/10.1016/j.jtice.2015.03.035
28 https://doi.org/10.1016/j.jtice.2017.01.006
29 https://doi.org/10.1016/j.molliq.2013.08.008
30 https://doi.org/10.1016/j.molliq.2015.11.052
31 https://doi.org/10.1016/j.molliq.2017.11.069
32 https://doi.org/10.1016/j.molliq.2018.04.075
33 https://doi.org/10.1016/j.physa.2015.11.032
34 https://doi.org/10.1016/j.physleta.2016.11.042
35 https://doi.org/10.1016/j.powtec.2013.05.030
36 https://doi.org/10.1016/j.scient.2012.06.015
37 https://doi.org/10.1063/1.1756684
38 https://doi.org/10.1063/1.4993866
39 https://doi.org/10.1063/1.5022060
40 https://doi.org/10.1063/1.868766
41 https://doi.org/10.1063/1.869307
42 https://doi.org/10.1080/10407782.2014.965017
43 https://doi.org/10.1103/physrev.94.511
44 https://doi.org/10.1103/physreve.68.026701
45 https://doi.org/10.1103/physreve.89.053312
46 https://doi.org/10.1103/physrevlett.94.025901
47 https://doi.org/10.1108/09615539810226094
48 https://doi.org/10.1142/s0129183118500304
49 https://doi.org/10.1209/0295-5075/17/6/001
50 https://doi.org/10.4208/cicp.060414.220115a
51 schema:datePublished 2019-03
52 schema:datePublishedReg 2019-03-01
53 schema:description Lattice Boltzmann method (LBM) was carried out to investigate the effects of magnetic field and nanofluid on the natural convection heat transfer in a baffled U-shaped enclosure. The combination of different specifications of the baffle, LBM, nanofluid and magnetic field is the main innovation in the present study. In order to consider the effect of Brownian motion on the thermal conductivity, Koo–Kleinstreuer–Li model is used to define thermal conductivity and viscosity of nanofluid. Effects of Rayleigh number, Hartmann number, nanoparticle volume fraction, height and position of the baffle on the fluid flow and heat transfer characteristics have been examined. It was found that raising the Rayleigh number and nanoparticle solid volume fraction leads to increase the average Nusselt number irrespective of the position of the hot obstacle. However, the heat transfer rate is suppressed by the magnetic field. The heat transfer enhancement by introducing nanofluid decreases as increasing Rayleigh number, but it increases as increasing the Hartmann number. Moreover, the maximum heat transfer rate was observed when the enclosure equipped with a baffle with (s, h) = (0.2, 0.3) or (0.4, 0.3).
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N0a0bcee79ef54903b47da45011af12cf
58 Nbfa9410830194bf894c7290809172446
59 sg:journal.1294862
60 schema:name Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method
61 schema:pagination 3197-3213
62 schema:productId N19e50a82555249508a167d9503dcc032
63 N26e6ee51db55438cbbae8fd09e76bf27
64 N69ff3d4535cd4615b219e692cb3bd495
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105549769
66 https://doi.org/10.1007/s10973-018-7518-y
67 schema:sdDatePublished 2019-04-11T12:53
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N8b3533df242d41eebc0b55da477028b5
70 schema:url https://link.springer.com/10.1007%2Fs10973-018-7518-y
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0a0bcee79ef54903b47da45011af12cf schema:volumeNumber 135
75 rdf:type schema:PublicationVolume
76 N12df8c27a08949c7a067c77cff9bc7ac rdf:first N7ebab14de56e49ccbe48ab9cc3492d2c
77 rdf:rest Na019d7aa80e24518b31733167f8676b9
78 N19e50a82555249508a167d9503dcc032 schema:name dimensions_id
79 schema:value pub.1105549769
80 rdf:type schema:PropertyValue
81 N26e6ee51db55438cbbae8fd09e76bf27 schema:name readcube_id
82 schema:value 4be15c46fb481984c4a7e6006f205ddb672b341e63344e8a93d36bad8972ffa0
83 rdf:type schema:PropertyValue
84 N36f1109048aa425dbac5511d82399ae1 rdf:first sg:person.014215404470.00
85 rdf:rest N80c641a8655946b5be8c935221e33c4f
86 N51dba0bf82bd441a89b401a9ea95724b rdf:first sg:person.016573246311.03
87 rdf:rest N12df8c27a08949c7a067c77cff9bc7ac
88 N69ff3d4535cd4615b219e692cb3bd495 schema:name doi
89 schema:value 10.1007/s10973-018-7518-y
90 rdf:type schema:PropertyValue
91 N7ebab14de56e49ccbe48ab9cc3492d2c schema:affiliation https://www.grid.ac/institutes/grid.9841.4
92 schema:familyName Manca
93 schema:givenName O.
94 rdf:type schema:Person
95 N80c641a8655946b5be8c935221e33c4f rdf:first sg:person.013643253601.05
96 rdf:rest N51dba0bf82bd441a89b401a9ea95724b
97 N8b3533df242d41eebc0b55da477028b5 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Na019d7aa80e24518b31733167f8676b9 rdf:first sg:person.010253554005.08
100 rdf:rest rdf:nil
101 Nbfa9410830194bf894c7290809172446 schema:issueNumber 6
102 rdf:type schema:PublicationIssue
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
107 schema:name Interdisciplinary Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1294862 schema:issn 1388-6150
110 1572-8943
111 schema:name Journal of Thermal Analysis and Calorimetry
112 rdf:type schema:Periodical
113 sg:person.010253554005.08 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
114 schema:familyName Yang
115 schema:givenName Zhigang
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253554005.08
117 rdf:type schema:Person
118 sg:person.013643253601.05 schema:affiliation https://www.grid.ac/institutes/grid.411973.9
119 schema:familyName Mohebbi
120 schema:givenName Rasul
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643253601.05
122 rdf:type schema:Person
123 sg:person.014215404470.00 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
124 schema:familyName Ma
125 schema:givenName Yuan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215404470.00
127 rdf:type schema:Person
128 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
129 schema:familyName Rashidi
130 schema:givenName M. M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
132 rdf:type schema:Person
133 https://doi.org/10.1002/cjce.5450850617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008884674
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cep.2018.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100247949
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.compfluid.2012.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587915
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.compfluid.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028853347
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.energy.2013.07.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700890
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.icheatmasstransfer.2012.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015572845
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028378373
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033738638
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008274609
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033817704
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025242868
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001176146
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004863366
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091505763
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092545770
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104265222
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijthermalsci.2010.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044727252
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijthermalsci.2011.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029261064
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijthermalsci.2012.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039850190
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jaerosci.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029406611
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jaerosci.2016.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000907609
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jmmm.2017.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026719993
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jtice.2014.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002369511
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jtice.2015.03.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026291215
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jtice.2017.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083414669
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.molliq.2013.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000090461
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.molliq.2015.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036178089
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.molliq.2017.11.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092658694
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.molliq.2018.04.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103254575
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.physa.2015.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890543
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.physleta.2016.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032832232
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.powtec.2013.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597630
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.scient.2012.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029808003
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.1756684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057815732
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.4993866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100106506
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1063/1.5022060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101299357
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1063/1.868766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051420693
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.869307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007260692
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1080/10407782.2014.965017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018869466
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrev.94.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462281
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physreve.68.026701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730526
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physreve.89.053312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746259
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.94.025901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829706
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1108/09615539810226094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043006853
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1142/s0129183118500304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101640684
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1209/0295-5075/17/6/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228747
224 rdf:type schema:CreativeWork
225 https://doi.org/10.4208/cicp.060414.220115a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035268498
226 rdf:type schema:CreativeWork
227 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
228 schema:name Shanghai Automotive Wind Tunnel Center, Tongji University, No. 4800, Cao’an Road, 201804, Shanghai, China
229 Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, No. 4800, Cao’an Road, 201804, Shanghai, China
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.411973.9 schema:alternateName Damghan University
232 schema:name School of Engineering, Damghan University, P.O. Box: 3671641167, Damghan, Iran
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
235 schema:name Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.9841.4 schema:alternateName Second University of Naples
238 schema:name Dipartimento di Ingegneria, Università degli Studi della Campania “Luigi Vanvitelli”, 81031, Aversa, (CE), Italy
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...