Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Xiaoling Ma, Hongbin Tan, Jinfeng Liu, Jin Wang, Xiaochun He

ABSTRACT

Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product’s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal’s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (≤ 400 °C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 °C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ·mol−1 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400°C for 2 h. More... »

PAGES

2565-2572

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2

DOI

http://dx.doi.org/10.1007/s10973-018-7441-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104401304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China", 
            "Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xiaoling", 
        "id": "sg:person.07522134415.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522134415.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China", 
            "Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China", 
            "Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Hongbin", 
        "id": "sg:person.07634475445.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634475445.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.010743553333.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743553333.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xiaochun", 
        "id": "sg:person.015452735766.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452735766.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.minpro.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007517323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.04.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013735658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hydromet.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019527384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2016.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023884346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2016.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023884346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2004.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029439998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2005.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030459300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2016.05.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032914386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033740559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-5021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034580336", 
          "https://doi.org/10.1007/s10973-015-5021-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hydromet.2006.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mawe.201300172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041981376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2011.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047809472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-013-3213-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050039246", 
          "https://doi.org/10.1007/s10973-013-3213-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2014.05.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050080470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-386x(01)00149-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051039026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-4888-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051163617", 
          "https://doi.org/10.1007/s10973-015-4888-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083875277", 
          "https://doi.org/10.1007/s10973-017-6156-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083875277", 
          "https://doi.org/10.1007/s10973-017-6156-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product\u2019s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal\u2019s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (\u2264 400 \u00b0C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 \u00b0C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ\u00b7mol\u22121 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400\u00b0C for 2 h.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7441-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere", 
    "pagination": "2565-2572", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52321f33ccbbf674a219de9c03c1088db406c1aaab6a2cbc8c56d8bdd0dc5371"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7441-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104401304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7441-2", 
      "https://app.dimensions.ai/details/publication/pub.1104401304"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7441-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7441-2 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author N9ce1ca7c369a4851b00866ec70981599
4 schema:citation sg:pub.10.1007/s10973-013-3213-1
5 sg:pub.10.1007/s10973-015-4888-2
6 sg:pub.10.1007/s10973-015-5021-2
7 sg:pub.10.1007/s10973-017-6156-0
8 https://doi.org/10.1002/mawe.201300172
9 https://doi.org/10.1016/j.hydromet.2006.03.013
10 https://doi.org/10.1016/j.hydromet.2015.04.004
11 https://doi.org/10.1016/j.jcrysgro.2015.07.037
12 https://doi.org/10.1016/j.jhazmat.2011.05.049
13 https://doi.org/10.1016/j.jhazmat.2014.05.091
14 https://doi.org/10.1016/j.jhazmat.2016.05.085
15 https://doi.org/10.1016/j.jssc.2016.02.022
16 https://doi.org/10.1016/j.minpro.2005.01.007
17 https://doi.org/10.1016/j.molstruc.2004.10.051
18 https://doi.org/10.1016/j.powtec.2014.04.092
19 https://doi.org/10.1016/j.tca.2005.12.019
20 https://doi.org/10.1016/s0304-386x(01)00149-9
21 schema:datePublished 2019-02
22 schema:datePublishedReg 2019-02-01
23 schema:description Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product’s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal’s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (≤ 400 °C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 °C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ·mol−1 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400°C for 2 h.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N1db1b1bfbfff4cb49901ade42343f194
28 Nd296e91f5c9f4c27b9ab16c84aa22934
29 sg:journal.1294862
30 schema:name Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere
31 schema:pagination 2565-2572
32 schema:productId N0180a5e17a444c089637009101a9b278
33 N181a3b4375a447a3af82822c3f617318
34 N3f240bc68bd04d2484822d82052f2f2d
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104401304
36 https://doi.org/10.1007/s10973-018-7441-2
37 schema:sdDatePublished 2019-04-11T11:06
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nbbbdde77181949589f010cb39740a359
40 schema:url https://link.springer.com/10.1007%2Fs10973-018-7441-2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0180a5e17a444c089637009101a9b278 schema:name readcube_id
45 schema:value 52321f33ccbbf674a219de9c03c1088db406c1aaab6a2cbc8c56d8bdd0dc5371
46 rdf:type schema:PropertyValue
47 N17d7060747504ea9a43cee96ca501ee6 rdf:first sg:person.07634475445.65
48 rdf:rest Nce2cef9e49284b429e91f110ed3269ee
49 N181a3b4375a447a3af82822c3f617318 schema:name doi
50 schema:value 10.1007/s10973-018-7441-2
51 rdf:type schema:PropertyValue
52 N1db1b1bfbfff4cb49901ade42343f194 schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N3f240bc68bd04d2484822d82052f2f2d schema:name dimensions_id
55 schema:value pub.1104401304
56 rdf:type schema:PropertyValue
57 N45cb969da2e9480580c8dc09ea8f8592 rdf:first sg:person.015452735766.46
58 rdf:rest rdf:nil
59 N9ce1ca7c369a4851b00866ec70981599 rdf:first sg:person.07522134415.67
60 rdf:rest N17d7060747504ea9a43cee96ca501ee6
61 Nbbbdde77181949589f010cb39740a359 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nbefb258863a141b4865bfc3249bc2237 rdf:first sg:person.010743553333.26
64 rdf:rest N45cb969da2e9480580c8dc09ea8f8592
65 Nce2cef9e49284b429e91f110ed3269ee rdf:first Nce9d1fb09c61463899d9f53434086629
66 rdf:rest Nbefb258863a141b4865bfc3249bc2237
67 Nce9d1fb09c61463899d9f53434086629 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
68 schema:familyName Liu
69 schema:givenName Jinfeng
70 rdf:type schema:Person
71 Nd296e91f5c9f4c27b9ab16c84aa22934 schema:volumeNumber 135
72 rdf:type schema:PublicationVolume
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Chemical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1294862 schema:issn 1388-6150
80 1572-8943
81 schema:name Journal of Thermal Analysis and Calorimetry
82 rdf:type schema:Periodical
83 sg:person.010743553333.26 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
84 schema:familyName Wang
85 schema:givenName Jin
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743553333.26
87 rdf:type schema:Person
88 sg:person.015452735766.46 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
89 schema:familyName He
90 schema:givenName Xiaochun
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452735766.46
92 rdf:type schema:Person
93 sg:person.07522134415.67 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
94 schema:familyName Ma
95 schema:givenName Xiaoling
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522134415.67
97 rdf:type schema:Person
98 sg:person.07634475445.65 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
99 schema:familyName Tan
100 schema:givenName Hongbin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634475445.65
102 rdf:type schema:Person
103 sg:pub.10.1007/s10973-013-3213-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050039246
104 https://doi.org/10.1007/s10973-013-3213-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10973-015-4888-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051163617
107 https://doi.org/10.1007/s10973-015-4888-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10973-015-5021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034580336
110 https://doi.org/10.1007/s10973-015-5021-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10973-017-6156-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083875277
113 https://doi.org/10.1007/s10973-017-6156-0
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/mawe.201300172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041981376
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.hydromet.2006.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625319
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.hydromet.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019527384
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jcrysgro.2015.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033740559
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jhazmat.2011.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047809472
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jhazmat.2014.05.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050080470
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jhazmat.2016.05.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032914386
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jssc.2016.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023884346
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.minpro.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007517323
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.molstruc.2004.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029439998
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.powtec.2014.04.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013735658
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.tca.2005.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030459300
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0304-386x(01)00149-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051039026
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.412500.2 schema:alternateName Shaanxi University of Technology
142 schema:name School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
143 Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.440649.b schema:alternateName Southwest University of Science and Technology
146 schema:name Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
147 School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
148 Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...