Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Xiaoling Ma, Hongbin Tan, Jinfeng Liu, Jin Wang, Xiaochun He

ABSTRACT

Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product’s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal’s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (≤ 400 °C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 °C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ·mol−1 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400°C for 2 h. More... »

PAGES

2565-2572

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2

DOI

http://dx.doi.org/10.1007/s10973-018-7441-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104401304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shaanxi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412500.2", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China", 
            "Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Xiaoling", 
        "id": "sg:person.07522134415.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522134415.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China", 
            "Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China", 
            "Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Hongbin", 
        "id": "sg:person.07634475445.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634475445.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jinfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.010743553333.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743553333.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440649.b", 
          "name": [
            "School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Xiaochun", 
        "id": "sg:person.015452735766.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452735766.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.minpro.2005.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007517323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.04.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013735658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hydromet.2015.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019527384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2016.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023884346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2016.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023884346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molstruc.2004.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029439998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2005.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030459300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2016.05.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032914386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.07.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033740559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-5021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034580336", 
          "https://doi.org/10.1007/s10973-015-5021-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.hydromet.2006.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mawe.201300172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041981376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2011.05.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047809472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-013-3213-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050039246", 
          "https://doi.org/10.1007/s10973-013-3213-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2014.05.091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050080470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-386x(01)00149-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051039026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-4888-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051163617", 
          "https://doi.org/10.1007/s10973-015-4888-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083875277", 
          "https://doi.org/10.1007/s10973-017-6156-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6156-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083875277", 
          "https://doi.org/10.1007/s10973-017-6156-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product\u2019s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal\u2019s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (\u2264 400 \u00b0C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 \u00b0C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ\u00b7mol\u22121 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400\u00b0C for 2 h.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7441-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere", 
    "pagination": "2565-2572", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52321f33ccbbf674a219de9c03c1088db406c1aaab6a2cbc8c56d8bdd0dc5371"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7441-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104401304"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7441-2", 
      "https://app.dimensions.ai/details/publication/pub.1104401304"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60375_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7441-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7441-2'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7441-2 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author Nd153771f7ce54cab87b72de501dc7fcf
4 schema:citation sg:pub.10.1007/s10973-013-3213-1
5 sg:pub.10.1007/s10973-015-4888-2
6 sg:pub.10.1007/s10973-015-5021-2
7 sg:pub.10.1007/s10973-017-6156-0
8 https://doi.org/10.1002/mawe.201300172
9 https://doi.org/10.1016/j.hydromet.2006.03.013
10 https://doi.org/10.1016/j.hydromet.2015.04.004
11 https://doi.org/10.1016/j.jcrysgro.2015.07.037
12 https://doi.org/10.1016/j.jhazmat.2011.05.049
13 https://doi.org/10.1016/j.jhazmat.2014.05.091
14 https://doi.org/10.1016/j.jhazmat.2016.05.085
15 https://doi.org/10.1016/j.jssc.2016.02.022
16 https://doi.org/10.1016/j.minpro.2005.01.007
17 https://doi.org/10.1016/j.molstruc.2004.10.051
18 https://doi.org/10.1016/j.powtec.2014.04.092
19 https://doi.org/10.1016/j.tca.2005.12.019
20 https://doi.org/10.1016/s0304-386x(01)00149-9
21 schema:datePublished 2019-02
22 schema:datePublishedReg 2019-02-01
23 schema:description Jarosite method is most widely employed to remove iron in the zinc metal hydrometallurgical process and ammonium jarosite sediment is produced. The sediment contains metals and other toxic elements, which have environmental impacts. Thermal decomposition of the sediment is favored as it can recover valuable metals and protect the environment. Ammonium jarosite was synthesized using the hydrothermal method. The influence of ammonium bicarbonate and sulphuric acid on product’s morphology was detected. Fine crystals were obtained by adding sulphuric acid. Ammonium bicarbonate did not obviously have an effect on the crystal’s morphology. The influence of ammonium bicarbonate and sulphuric acid on the product phase and output was not significant. The influence of acticarbon on the thermal decomposition of ammonium jarosite was investigated. At low temperature (≤ 400 °C), the carbon did not obviously have an effect on the decomposition of ammonium jarosite. But, at a high temperature (> 400 °C), the carbon can affect the decomposition temperature and intermediate phase of ammonium jarosite. The decomposition temperature of ammonium jarosite with acticarbon was lower than ammonium jarosite alone. The activation energy value Ea = 197.7 and 281.4 kJ·mol−1 for treated jarosite and treated jarosite with acticarbon were obtained, respectively, in which the jarosites were pre-treated at 400°C for 2 h.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N0baa90b7d8b94aa889b3beb03277fec6
28 Nee5af625d925429a93042c5061e07378
29 sg:journal.1294862
30 schema:name Preparation of ammonium jarosite and estimated activation energy of thermal decomposition in reducing atmosphere
31 schema:pagination 2565-2572
32 schema:productId N795e6ee0205843109419f7db52dbf057
33 Nf175e6f76b5940d19345e087f81b9b61
34 Nf6de1843545f474494e48a7ff719bfab
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104401304
36 https://doi.org/10.1007/s10973-018-7441-2
37 schema:sdDatePublished 2019-04-11T11:06
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N26c83613ecec405c98f1d77c7385b01a
40 schema:url https://link.springer.com/10.1007%2Fs10973-018-7441-2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0baa90b7d8b94aa889b3beb03277fec6 schema:volumeNumber 135
45 rdf:type schema:PublicationVolume
46 N26c83613ecec405c98f1d77c7385b01a schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N2b8f859ea1c045a68c3fe21e7c3d67b8 rdf:first sg:person.010743553333.26
49 rdf:rest Nbd487ac144a144ff8197755dd862c0a7
50 N795e6ee0205843109419f7db52dbf057 schema:name doi
51 schema:value 10.1007/s10973-018-7441-2
52 rdf:type schema:PropertyValue
53 Nb9de26b5d3cf494583ffce480ced8c40 rdf:first sg:person.07634475445.65
54 rdf:rest Nf6f07a0c24f04cd6963bdda94cdc26bb
55 Nbd487ac144a144ff8197755dd862c0a7 rdf:first sg:person.015452735766.46
56 rdf:rest rdf:nil
57 Nd153771f7ce54cab87b72de501dc7fcf rdf:first sg:person.07522134415.67
58 rdf:rest Nb9de26b5d3cf494583ffce480ced8c40
59 Nee5af625d925429a93042c5061e07378 schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 Nf175e6f76b5940d19345e087f81b9b61 schema:name dimensions_id
62 schema:value pub.1104401304
63 rdf:type schema:PropertyValue
64 Nf33bbdac17f548debfc4cbaa62ef85dc schema:affiliation https://www.grid.ac/institutes/grid.440649.b
65 schema:familyName Liu
66 schema:givenName Jinfeng
67 rdf:type schema:Person
68 Nf6de1843545f474494e48a7ff719bfab schema:name readcube_id
69 schema:value 52321f33ccbbf674a219de9c03c1088db406c1aaab6a2cbc8c56d8bdd0dc5371
70 rdf:type schema:PropertyValue
71 Nf6f07a0c24f04cd6963bdda94cdc26bb rdf:first Nf33bbdac17f548debfc4cbaa62ef85dc
72 rdf:rest N2b8f859ea1c045a68c3fe21e7c3d67b8
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
77 schema:name Other Chemical Sciences
78 rdf:type schema:DefinedTerm
79 sg:journal.1294862 schema:issn 1388-6150
80 1572-8943
81 schema:name Journal of Thermal Analysis and Calorimetry
82 rdf:type schema:Periodical
83 sg:person.010743553333.26 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
84 schema:familyName Wang
85 schema:givenName Jin
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010743553333.26
87 rdf:type schema:Person
88 sg:person.015452735766.46 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
89 schema:familyName He
90 schema:givenName Xiaochun
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015452735766.46
92 rdf:type schema:Person
93 sg:person.07522134415.67 schema:affiliation https://www.grid.ac/institutes/grid.412500.2
94 schema:familyName Ma
95 schema:givenName Xiaoling
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522134415.67
97 rdf:type schema:Person
98 sg:person.07634475445.65 schema:affiliation https://www.grid.ac/institutes/grid.440649.b
99 schema:familyName Tan
100 schema:givenName Hongbin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07634475445.65
102 rdf:type schema:Person
103 sg:pub.10.1007/s10973-013-3213-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050039246
104 https://doi.org/10.1007/s10973-013-3213-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10973-015-4888-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051163617
107 https://doi.org/10.1007/s10973-015-4888-2
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10973-015-5021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034580336
110 https://doi.org/10.1007/s10973-015-5021-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10973-017-6156-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083875277
113 https://doi.org/10.1007/s10973-017-6156-0
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/mawe.201300172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041981376
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.hydromet.2006.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625319
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.hydromet.2015.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019527384
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jcrysgro.2015.07.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033740559
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jhazmat.2011.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047809472
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jhazmat.2014.05.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050080470
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jhazmat.2016.05.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032914386
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jssc.2016.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023884346
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.minpro.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007517323
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.molstruc.2004.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029439998
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.powtec.2014.04.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013735658
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.tca.2005.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030459300
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0304-386x(01)00149-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051039026
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.412500.2 schema:alternateName Shaanxi University of Technology
142 schema:name School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
143 Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.440649.b schema:alternateName Southwest University of Science and Technology
146 schema:name Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
147 School of Materials Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, Sichuan, China
148 Shaanxi Engineering Center of Metallurgical Sediment Resource, Shaanxi University of Technology, 723000, Hanzhong, Shaanxi, China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...