Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Mohammad Amani, Pouria Amani, Mehdi Bahiraei, Somchai Wongwises

ABSTRACT

This paper assesses the contribution of TiO2 nanoparticles on thermal performance of a 0.5 mass% aqueous solution of carboxymethyl cellulose (CMC) in a square channel. In this regard, a neural network model is firstly developed for modeling of power law index, consistency index, and thermal conductivity of the aqueous solution of TiO2/CMC-water non-Newtonian nanofluid in terms of the nanoparticle concentration and temperature. Then, an attempt is made to evaluate the friction factor and heat transfer coefficient relative values. According to the results, it is found that the friction factor ratio is directly proportional to the temperature and nanoparticle content, while it inversely varies relative to the shear rate. Moreover, heat transfer coefficient ratio is improved at elevated nanoparticle content, and this improvement is much more profound at higher temperature conditions. For practical purposes, the nanofluid hydrothermal performance index is examined since the addition of nanoparticles increases both heat transfer and friction factor. The corresponding data disclose that the performance index is directly proportional to the nanoparticle content, especially at decreased shear rate and elevated temperature conditions. The application of TiO2/CMC-water nanofluid is found to be more favorable for applications with elevated shear rate conditions. More... »

PAGES

901-910

References to SciGraph publications

  • 2017-06. Natural convection of CNT water-based nanofluids in a differentially heated square cavity in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-12. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes in NANOSCALE RESEARCH LETTERS
  • 2018-02. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2018-03. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2018-05. Prediction of rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian hybrid nanofluid by designing new correlations and optimal artificial neural networks in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2019-01. Combination of nanofluid and inserts for heat transfer enhancement in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2017-12. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN in SCIENTIFIC REPORTS
  • 2019-01. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2018-02. Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-12. Turbulent convective heat transfer of nanofluids through a square channel in KOREAN JOURNAL OF CHEMICAL ENGINEERING
  • 2017-03. Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-018-7303-y

    DOI

    http://dx.doi.org/10.1007/s10973-018-7303-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103625012


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shahid Beheshti University of Medical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.411600.2", 
              "name": [
                "Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amani", 
            "givenName": "Mohammad", 
            "id": "sg:person.014202341614.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202341614.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Queensland", 
              "id": "https://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "School of Chemical Engineering, The University of Queensland, 4072, St Lucia, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Amani", 
            "givenName": "Pouria", 
            "id": "sg:person.013400013273.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400013273.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kermanshah University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.459724.9", 
              "name": [
                "Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bahiraei", 
            "givenName": "Mehdi", 
            "id": "sg:person.014522053627.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522053627.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "King Mongkut's University of Technology Thonburi", 
              "id": "https://www.grid.ac/institutes/grid.412151.2", 
              "name": [
                "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand", 
                "The Academy of Science, The Royal Institute of Thailand, Sanam Suea Pa, Dusit, 10300, Bangkok, Thailand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wongwises", 
            "givenName": "Somchai", 
            "id": "sg:person.012267021412.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1080/08916152.2013.871606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011756060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11814-011-0103-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014907404", 
              "https://doi.org/10.1007/s11814-011-0103-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.expthermflusci.2016.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022655869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/19942060.2012.11015398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023706164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1556-276x-6-252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026195132", 
              "https://doi.org/10.1186/1556-276x-6-252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2016.03.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027628349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(77)90027-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028046925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0017-9310(77)90027-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028046925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10407782.2015.1037178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030250186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2016.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031909609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2016.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033416985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034159347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5725-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034565499", 
              "https://doi.org/10.1007/s10973-016-5725-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5725-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034565499", 
              "https://doi.org/10.1007/s10973-016-5725-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042696386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(66)80016-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043924542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048629800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6102-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074204463", 
              "https://doi.org/10.1007/s10973-017-6102-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6102-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074204463", 
              "https://doi.org/10.1007/s10973-017-6102-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2017.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083692520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.icheatmasstransfer.2017.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083804036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ces.2017.03.065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084524452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2017.04.130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085115403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2017.04.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085121286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2017.05.090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085454274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6500-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085886517", 
              "https://doi.org/10.1007/s10973-017-6500-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6500-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085886517", 
              "https://doi.org/10.1007/s10973-017-6500-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2017.06.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086112467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jclepro.2017.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090952305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apt.2017.07.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091117307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6680-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091836607", 
              "https://doi.org/10.1007/s10973-017-6680-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6744-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092551037", 
              "https://doi.org/10.1007/s10973-017-6744-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2017.10.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092830247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-17444-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099597348", 
              "https://doi.org/10.1038/s41598-017-17444-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6895-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099693815", 
              "https://doi.org/10.1007/s10973-017-6895-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6903-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099702159", 
              "https://doi.org/10.1007/s10973-017-6903-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-017-6903-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099702159", 
              "https://doi.org/10.1007/s10973-017-6903-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2018.01.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100349982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtice.2018.01.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100794338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-018-7070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101171318", 
              "https://doi.org/10.1007/s10973-018-7070-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "This paper assesses the contribution of TiO2 nanoparticles on thermal performance of a 0.5 mass% aqueous solution of carboxymethyl cellulose (CMC) in a square channel. In this regard, a neural network model is firstly developed for modeling of power law index, consistency index, and thermal conductivity of the aqueous solution of TiO2/CMC-water non-Newtonian nanofluid in terms of the nanoparticle concentration and temperature. Then, an attempt is made to evaluate the friction factor and heat transfer coefficient relative values. According to the results, it is found that the friction factor ratio is directly proportional to the temperature and nanoparticle content, while it inversely varies relative to the shear rate. Moreover, heat transfer coefficient ratio is improved at elevated nanoparticle content, and this improvement is much more profound at higher temperature conditions. For practical purposes, the nanofluid hydrothermal performance index is examined since the addition of nanoparticles increases both heat transfer and friction factor. The corresponding data disclose that the performance index is directly proportional to the nanoparticle content, especially at decreased shear rate and elevated temperature conditions. The application of TiO2/CMC-water nanofluid is found to be more favorable for applications with elevated shear rate conditions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10973-018-7303-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "135"
          }
        ], 
        "name": "Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network", 
        "pagination": "901-910", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "38018002dee4e004b7305a949c1bba8293b3d89b7e42a92af3e7c59ff07ce87f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-018-7303-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103625012"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-018-7303-y", 
          "https://app.dimensions.ai/details/publication/pub.1103625012"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47985_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10973-018-7303-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7303-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7303-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7303-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7303-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    208 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-018-7303-y schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N19b8ca4d3022433799362aa009f87ac9
    4 schema:citation sg:pub.10.1007/s10973-016-5725-y
    5 sg:pub.10.1007/s10973-017-6102-1
    6 sg:pub.10.1007/s10973-017-6500-4
    7 sg:pub.10.1007/s10973-017-6680-y
    8 sg:pub.10.1007/s10973-017-6744-z
    9 sg:pub.10.1007/s10973-017-6895-y
    10 sg:pub.10.1007/s10973-017-6903-2
    11 sg:pub.10.1007/s10973-018-7070-9
    12 sg:pub.10.1007/s11814-011-0103-8
    13 sg:pub.10.1038/s41598-017-17444-5
    14 sg:pub.10.1186/1556-276x-6-252
    15 https://doi.org/10.1016/0009-2509(66)80016-7
    16 https://doi.org/10.1016/0017-9310(77)90027-8
    17 https://doi.org/10.1016/j.applthermaleng.2017.05.090
    18 https://doi.org/10.1016/j.applthermaleng.2017.06.106
    19 https://doi.org/10.1016/j.applthermaleng.2017.10.140
    20 https://doi.org/10.1016/j.applthermaleng.2018.01.041
    21 https://doi.org/10.1016/j.apt.2017.07.028
    22 https://doi.org/10.1016/j.ces.2017.03.065
    23 https://doi.org/10.1016/j.enconman.2017.04.068
    24 https://doi.org/10.1016/j.expthermflusci.2016.03.015
    25 https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019
    26 https://doi.org/10.1016/j.icheatmasstransfer.2017.02.006
    27 https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006
    28 https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.039
    29 https://doi.org/10.1016/j.jclepro.2017.08.014
    30 https://doi.org/10.1016/j.jtice.2018.01.014
    31 https://doi.org/10.1016/j.molliq.2016.03.007
    32 https://doi.org/10.1016/j.molliq.2016.12.013
    33 https://doi.org/10.1016/j.molliq.2017.02.014
    34 https://doi.org/10.1016/j.molliq.2017.04.130
    35 https://doi.org/10.1016/j.physe.2016.10.013
    36 https://doi.org/10.1080/08916152.2013.871606
    37 https://doi.org/10.1080/10407782.2015.1037178
    38 https://doi.org/10.1080/19942060.2012.11015398
    39 schema:datePublished 2019-01
    40 schema:datePublishedReg 2019-01-01
    41 schema:description This paper assesses the contribution of TiO2 nanoparticles on thermal performance of a 0.5 mass% aqueous solution of carboxymethyl cellulose (CMC) in a square channel. In this regard, a neural network model is firstly developed for modeling of power law index, consistency index, and thermal conductivity of the aqueous solution of TiO2/CMC-water non-Newtonian nanofluid in terms of the nanoparticle concentration and temperature. Then, an attempt is made to evaluate the friction factor and heat transfer coefficient relative values. According to the results, it is found that the friction factor ratio is directly proportional to the temperature and nanoparticle content, while it inversely varies relative to the shear rate. Moreover, heat transfer coefficient ratio is improved at elevated nanoparticle content, and this improvement is much more profound at higher temperature conditions. For practical purposes, the nanofluid hydrothermal performance index is examined since the addition of nanoparticles increases both heat transfer and friction factor. The corresponding data disclose that the performance index is directly proportional to the nanoparticle content, especially at decreased shear rate and elevated temperature conditions. The application of TiO2/CMC-water nanofluid is found to be more favorable for applications with elevated shear rate conditions.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N5efae8cdc9f3452997f679cb58ed876f
    46 N6ee53e3bde3d478390d04828c00e5967
    47 sg:journal.1294862
    48 schema:name Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network
    49 schema:pagination 901-910
    50 schema:productId N083a76774d594198b7a3865440871702
    51 N6d4a165ca2794bef9a83ff99f08d5cbe
    52 Nbe6fab099d0449af81c72b801630255e
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103625012
    54 https://doi.org/10.1007/s10973-018-7303-y
    55 schema:sdDatePublished 2019-04-11T09:12
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N5e37859f63824dc8a5d7e8b92a6641eb
    58 schema:url https://link.springer.com/10.1007%2Fs10973-018-7303-y
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N083a76774d594198b7a3865440871702 schema:name dimensions_id
    63 schema:value pub.1103625012
    64 rdf:type schema:PropertyValue
    65 N19b8ca4d3022433799362aa009f87ac9 rdf:first sg:person.014202341614.26
    66 rdf:rest Ncf4967e5c13948a3b4e78ae04cffd1fc
    67 N5e37859f63824dc8a5d7e8b92a6641eb schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N5efae8cdc9f3452997f679cb58ed876f schema:volumeNumber 135
    70 rdf:type schema:PublicationVolume
    71 N6d4a165ca2794bef9a83ff99f08d5cbe schema:name doi
    72 schema:value 10.1007/s10973-018-7303-y
    73 rdf:type schema:PropertyValue
    74 N6ee53e3bde3d478390d04828c00e5967 schema:issueNumber 2
    75 rdf:type schema:PublicationIssue
    76 N948051d8cc4d45f9b3f9ad71ed482017 rdf:first sg:person.012267021412.00
    77 rdf:rest rdf:nil
    78 Nbe6fab099d0449af81c72b801630255e schema:name readcube_id
    79 schema:value 38018002dee4e004b7305a949c1bba8293b3d89b7e42a92af3e7c59ff07ce87f
    80 rdf:type schema:PropertyValue
    81 Ncf4967e5c13948a3b4e78ae04cffd1fc rdf:first sg:person.013400013273.55
    82 rdf:rest Nfba513261e554d7ea655688759df3001
    83 Nfba513261e554d7ea655688759df3001 rdf:first sg:person.014522053627.92
    84 rdf:rest N948051d8cc4d45f9b3f9ad71ed482017
    85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Chemical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Physical Chemistry (incl. Structural)
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1294862 schema:issn 1388-6150
    92 1572-8943
    93 schema:name Journal of Thermal Analysis and Calorimetry
    94 rdf:type schema:Periodical
    95 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
    96 schema:familyName Wongwises
    97 schema:givenName Somchai
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
    99 rdf:type schema:Person
    100 sg:person.013400013273.55 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
    101 schema:familyName Amani
    102 schema:givenName Pouria
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400013273.55
    104 rdf:type schema:Person
    105 sg:person.014202341614.26 schema:affiliation https://www.grid.ac/institutes/grid.411600.2
    106 schema:familyName Amani
    107 schema:givenName Mohammad
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202341614.26
    109 rdf:type schema:Person
    110 sg:person.014522053627.92 schema:affiliation https://www.grid.ac/institutes/grid.459724.9
    111 schema:familyName Bahiraei
    112 schema:givenName Mehdi
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522053627.92
    114 rdf:type schema:Person
    115 sg:pub.10.1007/s10973-016-5725-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034565499
    116 https://doi.org/10.1007/s10973-016-5725-y
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s10973-017-6102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074204463
    119 https://doi.org/10.1007/s10973-017-6102-1
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s10973-017-6500-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886517
    122 https://doi.org/10.1007/s10973-017-6500-4
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s10973-017-6680-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836607
    125 https://doi.org/10.1007/s10973-017-6680-y
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10973-017-6744-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092551037
    128 https://doi.org/10.1007/s10973-017-6744-z
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10973-017-6895-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693815
    131 https://doi.org/10.1007/s10973-017-6895-y
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s10973-017-6903-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099702159
    134 https://doi.org/10.1007/s10973-017-6903-2
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
    137 https://doi.org/10.1007/s10973-018-7070-9
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s11814-011-0103-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014907404
    140 https://doi.org/10.1007/s11814-011-0103-8
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/s41598-017-17444-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597348
    143 https://doi.org/10.1038/s41598-017-17444-5
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1186/1556-276x-6-252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026195132
    146 https://doi.org/10.1186/1556-276x-6-252
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/0009-2509(66)80016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043924542
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/0017-9310(77)90027-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028046925
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.applthermaleng.2017.05.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085454274
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.applthermaleng.2017.06.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086112467
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.applthermaleng.2017.10.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092830247
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.applthermaleng.2018.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349982
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.apt.2017.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091117307
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.ces.2017.03.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084524452
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.enconman.2017.04.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085121286
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.expthermflusci.2016.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022655869
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034159347
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.icheatmasstransfer.2017.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083804036
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048629800
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042696386
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.jclepro.2017.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090952305
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.jtice.2018.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100794338
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.molliq.2016.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027628349
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.molliq.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031909609
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.molliq.2017.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083692520
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.molliq.2017.04.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085115403
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.physe.2016.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033416985
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1080/08916152.2013.871606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011756060
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1080/10407782.2015.1037178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250186
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1080/19942060.2012.11015398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023706164
    195 rdf:type schema:CreativeWork
    196 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
    197 schema:name School of Chemical Engineering, The University of Queensland, 4072, St Lucia, Australia
    198 rdf:type schema:Organization
    199 https://www.grid.ac/institutes/grid.411600.2 schema:alternateName Shahid Beheshti University of Medical Sciences
    200 schema:name Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran, Iran
    201 rdf:type schema:Organization
    202 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
    203 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand
    204 The Academy of Science, The Royal Institute of Thailand, Sanam Suea Pa, Dusit, 10300, Bangkok, Thailand
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.459724.9 schema:alternateName Kermanshah University of Technology
    207 schema:name Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
    208 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...