Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Dariush Mansoury, Faramarz Ilami Doshmanziari, Sahar Rezaie, Mohammad Mehdi Rashidi

ABSTRACT

A comprehensive experimental investigation is intended to survey consequence of nanofluid on performance of sundry parallel flow heat exchangers with the same heat transfer surface area. An experimental setup including one double-pipe heat exchanger, two shell-and-tube heat exchangers with different tube passes, and one plate heat exchanger is designed and built to carry out the experiments. The experiments are performed under turbulent flow conditions using distilled water and Al2O3/water nanofluid with 0.2, 0.5, and 1% particle volume concentrations. Based on the results from this study, the double-pipe heat exchanger reflected the best outcomes in the heat transfer coefficient with a maximum enhancement of 26%, while only a 7% increment in the heat transfer coefficient is observed for the plate heat exchanger. On the other hand, minimum punishment for pressure drop of the working fluids due to adding the nanoparticles is observed in the plate heat exchanger at 1% volume concentration with a maximum value of 10%. More... »

PAGES

625-643

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7286-8

DOI

http://dx.doi.org/10.1007/s10973-018-7286-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103600108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tarbiat Modares University", 
          "id": "https://www.grid.ac/institutes/grid.412266.5", 
          "name": [
            "Department of Marine Physics, College of Marine Sciences, Tarbiat Modares University, Imam Reza Blvd., 46417-76489, Nour, Mazandaran Province, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansoury", 
        "givenName": "Dariush", 
        "id": "sg:person.014255070242.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255070242.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sahand University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412345.5", 
          "name": [
            "Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilami Doshmanziari", 
        "givenName": "Faramarz", 
        "id": "sg:person.012070211504.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070211504.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Research and Development Department, Jam Polypropylene Company, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rezaie", 
        "givenName": "Sahar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.6572.6", 
          "name": [
            "Department of Civil Engineering, University of Birmingham, Birmingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "Mohammad Mehdi", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000421105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001631320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006224356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009308635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2012.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009573254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015739496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2013.846196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020029437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020787243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021771926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023027932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023312174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026100419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029497506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-015-4820-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029982842", 
          "https://doi.org/10.1007/s10973-015-4820-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031103478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031363600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031644638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2006.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033084262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2012.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034559336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-015-1651-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035848147", 
          "https://doi.org/10.1007/s00231-015-1651-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.05.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036435563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2011.4399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036455271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-015-3062-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038927448", 
          "https://doi.org/10.1007/s11051-015-3062-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039618558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041414653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.06.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042522989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acme.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043545179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2009.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045835837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045970186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046664523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-9322(02)00010-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049881280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050816282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1571080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2818775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062084673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3250612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062112661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6773-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482349", 
          "https://doi.org/10.1007/s10973-017-6773-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6907-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099920021", 
          "https://doi.org/10.1007/s10973-017-6907-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b11784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109614628"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "A comprehensive experimental investigation is intended to survey consequence of nanofluid on performance of sundry parallel flow heat exchangers with the same heat transfer surface area. An experimental setup including one double-pipe heat exchanger, two shell-and-tube heat exchangers with different tube passes, and one plate heat exchanger is designed and built to carry out the experiments. The experiments are performed under turbulent flow conditions using distilled water and Al2O3/water nanofluid with 0.2, 0.5, and 1% particle volume concentrations. Based on the results from this study, the double-pipe heat exchanger reflected the best outcomes in the heat transfer coefficient with a maximum enhancement of 26%, while only a 7% increment in the heat transfer coefficient is observed for the plate heat exchanger. On the other hand, minimum punishment for pressure drop of the working fluids due to adding the nanoparticles is observed in the plate heat exchanger at 1% volume concentration with a maximum value of 10%.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7286-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers", 
    "pagination": "625-643", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36fa26c7360fc5b5721351040f6517ecaa49f976c039241fefc1b9e07ba00e7e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7286-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103600108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7286-8", 
      "https://app.dimensions.ai/details/publication/pub.1103600108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47956_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7286-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7286-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7286-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7286-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7286-8'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7286-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nc14c0ae0ab9740eeb5194f63ce3a03e1
4 schema:citation sg:pub.10.1007/s00231-015-1651-y
5 sg:pub.10.1007/s10973-015-4820-9
6 sg:pub.10.1007/s10973-017-6773-7
7 sg:pub.10.1007/s10973-017-6907-y
8 sg:pub.10.1007/s10973-018-7070-9
9 sg:pub.10.1007/s11051-015-3062-x
10 https://doi.org/10.1016/j.acme.2013.08.002
11 https://doi.org/10.1016/j.applthermaleng.2006.03.014
12 https://doi.org/10.1016/j.applthermaleng.2012.11.027
13 https://doi.org/10.1016/j.applthermaleng.2016.03.015
14 https://doi.org/10.1016/j.apt.2015.12.011
15 https://doi.org/10.1016/j.ces.2009.04.004
16 https://doi.org/10.1016/j.enconman.2006.03.023
17 https://doi.org/10.1016/j.enconman.2010.06.072
18 https://doi.org/10.1016/j.energy.2016.05.051
19 https://doi.org/10.1016/j.expthermflusci.2011.07.004
20 https://doi.org/10.1016/j.expthermflusci.2011.12.013
21 https://doi.org/10.1016/j.expthermflusci.2012.08.009
22 https://doi.org/10.1016/j.expthermflusci.2012.08.014
23 https://doi.org/10.1016/j.expthermflusci.2013.04.012
24 https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002
25 https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003
26 https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002
27 https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
28 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023
29 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
30 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.019
31 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.072
32 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082
33 https://doi.org/10.1016/j.ijrefrig.2012.08.009
34 https://doi.org/10.1016/j.jmmm.2016.05.026
35 https://doi.org/10.1016/j.powtec.2007.11.014
36 https://doi.org/10.1016/s0301-9322(02)00010-1
37 https://doi.org/10.1080/08916159808946559
38 https://doi.org/10.1080/10407782.2013.846196
39 https://doi.org/10.1115/1.1571080
40 https://doi.org/10.1115/1.2150834
41 https://doi.org/10.1115/1.2818775
42 https://doi.org/10.1115/1.3250612
43 https://doi.org/10.1166/jnn.2011.4399
44 https://doi.org/10.1201/b11784
45 schema:datePublished 2019-01
46 schema:datePublishedReg 2019-01-01
47 schema:description A comprehensive experimental investigation is intended to survey consequence of nanofluid on performance of sundry parallel flow heat exchangers with the same heat transfer surface area. An experimental setup including one double-pipe heat exchanger, two shell-and-tube heat exchangers with different tube passes, and one plate heat exchanger is designed and built to carry out the experiments. The experiments are performed under turbulent flow conditions using distilled water and Al2O3/water nanofluid with 0.2, 0.5, and 1% particle volume concentrations. Based on the results from this study, the double-pipe heat exchanger reflected the best outcomes in the heat transfer coefficient with a maximum enhancement of 26%, while only a 7% increment in the heat transfer coefficient is observed for the plate heat exchanger. On the other hand, minimum punishment for pressure drop of the working fluids due to adding the nanoparticles is observed in the plate heat exchanger at 1% volume concentration with a maximum value of 10%.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N5ec4944d561c4ec1924ee6f09354d057
52 Nbbf4e8f11ad24058a759739d13822123
53 sg:journal.1294862
54 schema:name Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers
55 schema:pagination 625-643
56 schema:productId Naf6d7d78a80f479f9c26a812dadc26ab
57 Ndee59f69fc5e4caf881c35dfb9a060c5
58 Nfb3359b6fe214b14bcd8fd0bc71bc522
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103600108
60 https://doi.org/10.1007/s10973-018-7286-8
61 schema:sdDatePublished 2019-04-11T09:07
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nb940d3390a71450184d1aa02e1a10ea5
64 schema:url https://link.springer.com/10.1007%2Fs10973-018-7286-8
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N160c10d5c65749f8a000ffec2b2d143f rdf:first sg:person.016573246311.03
69 rdf:rest rdf:nil
70 N1b510c24d2614d0b99b00100defb5ccc rdf:first sg:person.012070211504.33
71 rdf:rest N36142d16b73c43f3b7ff06e4f0ea9a18
72 N36142d16b73c43f3b7ff06e4f0ea9a18 rdf:first N51387e78340f4c0aa1e19f64bdd305c9
73 rdf:rest N160c10d5c65749f8a000ffec2b2d143f
74 N51387e78340f4c0aa1e19f64bdd305c9 schema:affiliation Na74a52898f1c459180ab0b232efb549c
75 schema:familyName Rezaie
76 schema:givenName Sahar
77 rdf:type schema:Person
78 N5ec4944d561c4ec1924ee6f09354d057 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 Na74a52898f1c459180ab0b232efb549c schema:name Research and Development Department, Jam Polypropylene Company, Tehran, Iran
81 rdf:type schema:Organization
82 Naf6d7d78a80f479f9c26a812dadc26ab schema:name dimensions_id
83 schema:value pub.1103600108
84 rdf:type schema:PropertyValue
85 Nb940d3390a71450184d1aa02e1a10ea5 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nbbf4e8f11ad24058a759739d13822123 schema:volumeNumber 135
88 rdf:type schema:PublicationVolume
89 Nc14c0ae0ab9740eeb5194f63ce3a03e1 rdf:first sg:person.014255070242.88
90 rdf:rest N1b510c24d2614d0b99b00100defb5ccc
91 Ndee59f69fc5e4caf881c35dfb9a060c5 schema:name doi
92 schema:value 10.1007/s10973-018-7286-8
93 rdf:type schema:PropertyValue
94 Nfb3359b6fe214b14bcd8fd0bc71bc522 schema:name readcube_id
95 schema:value 36fa26c7360fc5b5721351040f6517ecaa49f976c039241fefc1b9e07ba00e7e
96 rdf:type schema:PropertyValue
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
101 schema:name Interdisciplinary Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1294862 schema:issn 1388-6150
104 1572-8943
105 schema:name Journal of Thermal Analysis and Calorimetry
106 rdf:type schema:Periodical
107 sg:person.012070211504.33 schema:affiliation https://www.grid.ac/institutes/grid.412345.5
108 schema:familyName Ilami Doshmanziari
109 schema:givenName Faramarz
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012070211504.33
111 rdf:type schema:Person
112 sg:person.014255070242.88 schema:affiliation https://www.grid.ac/institutes/grid.412266.5
113 schema:familyName Mansoury
114 schema:givenName Dariush
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255070242.88
116 rdf:type schema:Person
117 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.6572.6
118 schema:familyName Rashidi
119 schema:givenName Mohammad Mehdi
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
121 rdf:type schema:Person
122 sg:pub.10.1007/s00231-015-1651-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035848147
123 https://doi.org/10.1007/s00231-015-1651-y
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10973-015-4820-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029982842
126 https://doi.org/10.1007/s10973-015-4820-9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10973-017-6773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482349
129 https://doi.org/10.1007/s10973-017-6773-7
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10973-017-6907-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099920021
132 https://doi.org/10.1007/s10973-017-6907-y
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
135 https://doi.org/10.1007/s10973-018-7070-9
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11051-015-3062-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038927448
138 https://doi.org/10.1007/s11051-015-3062-x
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.acme.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043545179
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.applthermaleng.2006.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023312174
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.applthermaleng.2012.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009573254
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.applthermaleng.2016.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020787243
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.apt.2015.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618558
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ces.2009.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045835837
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.enconman.2006.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033084262
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.enconman.2010.06.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042522989
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.energy.2016.05.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036435563
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.expthermflusci.2011.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041414653
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.expthermflusci.2011.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046664523
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.expthermflusci.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031644638
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.expthermflusci.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631320
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.expthermflusci.2013.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000421105
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009308635
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023027932
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026100419
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050816282
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006224356
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045970186
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031363600
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015739496
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031103478
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ijrefrig.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034559336
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jmmm.2016.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771926
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.powtec.2007.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029497506
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0301-9322(02)00010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049881280
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/10407782.2013.846196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020029437
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1115/1.1571080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072311
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1115/1.2818775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062084673
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1115/1.3250612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112661
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1166/jnn.2011.4399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036455271
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1201/b11784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109614628
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.412266.5 schema:alternateName Tarbiat Modares University
211 schema:name Department of Marine Physics, College of Marine Sciences, Tarbiat Modares University, Imam Reza Blvd., 46417-76489, Nour, Mazandaran Province, Iran
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.412345.5 schema:alternateName Sahand University of Technology
214 schema:name Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.6572.6 schema:alternateName University of Birmingham
217 schema:name Department of Civil Engineering, University of Birmingham, Birmingham, UK
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...