Toluene methylation to para-xylene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Mahdi Abdi-khanghah, Abdullah A. A. A. Alrashed, Touba Hamoule, Reza Mosayebi Behbahani, Marjan Goodarzi

ABSTRACT

To investigate the effect of operational parameter and transport phenomena on para-xylene production from toluene methylation with methanol, a fixed bed tubular reactor packed with Al-HMS-5 mesoporous catalyst was numerically studied. A mechanistic Longmuir–Hinshelwood-type kinetic study has been implemented on a proposed reaction network based on former experimental observation and theoretical background. Kinetic parameters and activation energy related to proposed reaction network for toluene methylation were evaluated using nonlinear regression and Arrhenius plot, respectively. In addition, heat transfer, fluid flow, and chemical reaction equations consisting of toluene methylation and xylene isomerization were solved using finite element method. In order to optimize toluene methylation process, reaction temperature and residence time were investigated. The results showed that uniform distribution of temperature exists at the reactor. There is only deviation from uniform temperature at the reactor entrance, but in other places, the temperature distribution is uniform. As a result, fluid temperature quickly becomes the same as the wall temperature, making the toluene methylation reaction highly efficient. Finally, the residence time of 60 s and wall temperature of 425 K were recommended as optimum working values. More... »

PAGES

1723-1732

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7228-5

DOI

http://dx.doi.org/10.1007/s10973-018-7228-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103402863


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Petroleum University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444962.9", 
          "name": [
            "Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdi-khanghah", 
        "givenName": "Mahdi", 
        "id": "sg:person.011764552272.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764552272.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Public Authority for Applied Education and Training", 
          "id": "https://www.grid.ac/institutes/grid.459471.a", 
          "name": [
            "Department of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training, Adailiya, Kuwait"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alrashed", 
        "givenName": "Abdullah A. A. A.", 
        "id": "sg:person.07640517001.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640517001.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Petroleum University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444962.9", 
          "name": [
            "Department of Basic Science, Petroleum University of Technology, Ahwaz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamoule", 
        "givenName": "Touba", 
        "id": "sg:person.015713421757.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015713421757.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Petroleum University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.444962.9", 
          "name": [
            "Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behbahani", 
        "givenName": "Reza Mosayebi", 
        "id": "sg:person.012267616041.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267616041.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ton Duc Thang University", 
          "id": "https://www.grid.ac/institutes/grid.444812.f", 
          "name": [
            "Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodarzi", 
        "givenName": "Marjan", 
        "id": "sg:person.010216132252.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216132252.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2014.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000284670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2010.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000452401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inoche.2013.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004313293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2006.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005965050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cep.2012.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006982958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2012.04.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010538006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2009.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014782244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2014.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014830551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2011.07.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015040564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2005.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018034797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2005.08.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018034797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2011.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018606071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-9953(07)60024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021227794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021578540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2015.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022454050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-9953(07)60023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022701333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027414854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2015.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031987822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1872-2067(10)60113-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038055922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2013.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039827925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407790.2015.1012440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040450150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2014.916101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041517598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2007.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043048030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bbb.1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051941133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs4000766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cs400377b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055422342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie071038o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie071038o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie1018904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055603112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie1018904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055603112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie401156x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055607329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ind.2014.0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059277389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcat.2017.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084085454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2016.1277936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084163149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.taml.2017.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090571564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407782.2017.1353380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091110602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10916466.2017.1369111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093063033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4704283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098545690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22436/jmcs.012.02.06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105002165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "To investigate the effect of operational parameter and transport phenomena on para-xylene production from toluene methylation with methanol, a fixed bed tubular reactor packed with Al-HMS-5 mesoporous catalyst was numerically studied. A mechanistic Longmuir\u2013Hinshelwood-type kinetic study has been implemented on a proposed reaction network based on former experimental observation and theoretical background. Kinetic parameters and activation energy related to proposed reaction network for toluene methylation were evaluated using nonlinear regression and Arrhenius plot, respectively. In addition, heat transfer, fluid flow, and chemical reaction equations consisting of toluene methylation and xylene isomerization were solved using finite element method. In order to optimize toluene methylation process, reaction temperature and residence time were investigated. The results showed that uniform distribution of temperature exists at the reactor. There is only deviation from uniform temperature at the reactor entrance, but in other places, the temperature distribution is uniform. As a result, fluid temperature quickly becomes the same as the wall temperature, making the toluene methylation reaction highly efficient. Finally, the residence time of 60 s and wall temperature of 425 K were recommended as optimum working values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7228-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Toluene methylation to para-xylene", 
    "pagination": "1723-1732", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3689cf6f6eb3c158a46e73606fa777b9e973247e2ec846982ec3be5f1a197b79"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7228-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103402863"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7228-5", 
      "https://app.dimensions.ai/details/publication/pub.1103402863"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77544_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7228-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7228-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7228-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7228-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7228-5'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7228-5 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nc395ed5a18aa40c69a89dfe5c053bae9
4 schema:citation https://doi.org/10.1002/bbb.1360
5 https://doi.org/10.1016/j.applthermaleng.2014.09.016
6 https://doi.org/10.1016/j.catcom.2009.04.028
7 https://doi.org/10.1016/j.catcom.2016.01.027
8 https://doi.org/10.1016/j.cattod.2010.05.036
9 https://doi.org/10.1016/j.cattod.2014.08.002
10 https://doi.org/10.1016/j.cej.2007.09.019
11 https://doi.org/10.1016/j.cej.2012.04.100
12 https://doi.org/10.1016/j.cep.2012.10.016
13 https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009
14 https://doi.org/10.1016/j.ijheatfluidflow.2015.02.004
15 https://doi.org/10.1016/j.inoche.2013.01.027
16 https://doi.org/10.1016/j.jcat.2011.08.007
17 https://doi.org/10.1016/j.jcat.2017.03.007
18 https://doi.org/10.1016/j.memsci.2011.07.025
19 https://doi.org/10.1016/j.memsci.2014.12.048
20 https://doi.org/10.1016/j.micromeso.2005.08.021
21 https://doi.org/10.1016/j.micromeso.2013.08.040
22 https://doi.org/10.1016/j.micromeso.2015.02.018
23 https://doi.org/10.1016/j.rser.2006.07.015
24 https://doi.org/10.1016/j.taml.2017.06.002
25 https://doi.org/10.1016/s1003-9953(07)60023-1
26 https://doi.org/10.1016/s1003-9953(07)60024-3
27 https://doi.org/10.1016/s1872-2067(10)60113-1
28 https://doi.org/10.1021/cs4000766
29 https://doi.org/10.1021/cs400377b
30 https://doi.org/10.1021/ie071038o
31 https://doi.org/10.1021/ie1018904
32 https://doi.org/10.1021/ie401156x
33 https://doi.org/10.1063/1.4704283
34 https://doi.org/10.1080/10407782.2014.916101
35 https://doi.org/10.1080/10407782.2016.1277936
36 https://doi.org/10.1080/10407782.2017.1353380
37 https://doi.org/10.1080/10407790.2015.1012440
38 https://doi.org/10.1080/10916466.2017.1369111
39 https://doi.org/10.1089/ind.2014.0002
40 https://doi.org/10.22436/jmcs.012.02.06
41 schema:datePublished 2019-02
42 schema:datePublishedReg 2019-02-01
43 schema:description To investigate the effect of operational parameter and transport phenomena on para-xylene production from toluene methylation with methanol, a fixed bed tubular reactor packed with Al-HMS-5 mesoporous catalyst was numerically studied. A mechanistic Longmuir–Hinshelwood-type kinetic study has been implemented on a proposed reaction network based on former experimental observation and theoretical background. Kinetic parameters and activation energy related to proposed reaction network for toluene methylation were evaluated using nonlinear regression and Arrhenius plot, respectively. In addition, heat transfer, fluid flow, and chemical reaction equations consisting of toluene methylation and xylene isomerization were solved using finite element method. In order to optimize toluene methylation process, reaction temperature and residence time were investigated. The results showed that uniform distribution of temperature exists at the reactor. There is only deviation from uniform temperature at the reactor entrance, but in other places, the temperature distribution is uniform. As a result, fluid temperature quickly becomes the same as the wall temperature, making the toluene methylation reaction highly efficient. Finally, the residence time of 60 s and wall temperature of 425 K were recommended as optimum working values.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N3c53db1601aa44168b25d237827cffe9
48 N403f34436df44ecc9e31cf339c63b91c
49 sg:journal.1294862
50 schema:name Toluene methylation to para-xylene
51 schema:pagination 1723-1732
52 schema:productId N6bdee8cefae54889814f6c6783c3173e
53 N9bfaddd281ed431c9f9bee82803541b0
54 Na3b969316a3e4bc7a1d267aa0b8532f4
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103402863
56 https://doi.org/10.1007/s10973-018-7228-5
57 schema:sdDatePublished 2019-04-11T10:48
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nd59ba245c3e1447cb10bfd5a752d599f
60 schema:url https://link.springer.com/10.1007%2Fs10973-018-7228-5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N117282ccf3564d9f8d87f2c8c5d8678a rdf:first sg:person.012267616041.04
65 rdf:rest N5987ed4d3525410ab4f61492c966b41f
66 N35b5713b427e4db7b81a11dacbae99fe rdf:first sg:person.07640517001.19
67 rdf:rest Nf1a2f590200d4705bbb6e3a91004d10c
68 N3c53db1601aa44168b25d237827cffe9 schema:volumeNumber 135
69 rdf:type schema:PublicationVolume
70 N403f34436df44ecc9e31cf339c63b91c schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 N5987ed4d3525410ab4f61492c966b41f rdf:first sg:person.010216132252.32
73 rdf:rest rdf:nil
74 N6bdee8cefae54889814f6c6783c3173e schema:name doi
75 schema:value 10.1007/s10973-018-7228-5
76 rdf:type schema:PropertyValue
77 N9bfaddd281ed431c9f9bee82803541b0 schema:name dimensions_id
78 schema:value pub.1103402863
79 rdf:type schema:PropertyValue
80 Na3b969316a3e4bc7a1d267aa0b8532f4 schema:name readcube_id
81 schema:value 3689cf6f6eb3c158a46e73606fa777b9e973247e2ec846982ec3be5f1a197b79
82 rdf:type schema:PropertyValue
83 Nc395ed5a18aa40c69a89dfe5c053bae9 rdf:first sg:person.011764552272.25
84 rdf:rest N35b5713b427e4db7b81a11dacbae99fe
85 Nd59ba245c3e1447cb10bfd5a752d599f schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nf1a2f590200d4705bbb6e3a91004d10c rdf:first sg:person.015713421757.60
88 rdf:rest N117282ccf3564d9f8d87f2c8c5d8678a
89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
90 schema:name Engineering
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
93 schema:name Interdisciplinary Engineering
94 rdf:type schema:DefinedTerm
95 sg:journal.1294862 schema:issn 1388-6150
96 1572-8943
97 schema:name Journal of Thermal Analysis and Calorimetry
98 rdf:type schema:Periodical
99 sg:person.010216132252.32 schema:affiliation https://www.grid.ac/institutes/grid.444812.f
100 schema:familyName Goodarzi
101 schema:givenName Marjan
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010216132252.32
103 rdf:type schema:Person
104 sg:person.011764552272.25 schema:affiliation https://www.grid.ac/institutes/grid.444962.9
105 schema:familyName Abdi-khanghah
106 schema:givenName Mahdi
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011764552272.25
108 rdf:type schema:Person
109 sg:person.012267616041.04 schema:affiliation https://www.grid.ac/institutes/grid.444962.9
110 schema:familyName Behbahani
111 schema:givenName Reza Mosayebi
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267616041.04
113 rdf:type schema:Person
114 sg:person.015713421757.60 schema:affiliation https://www.grid.ac/institutes/grid.444962.9
115 schema:familyName Hamoule
116 schema:givenName Touba
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015713421757.60
118 rdf:type schema:Person
119 sg:person.07640517001.19 schema:affiliation https://www.grid.ac/institutes/grid.459471.a
120 schema:familyName Alrashed
121 schema:givenName Abdullah A. A. A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07640517001.19
123 rdf:type schema:Person
124 https://doi.org/10.1002/bbb.1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051941133
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.applthermaleng.2014.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000284670
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.catcom.2009.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014782244
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.catcom.2016.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687296
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.cattod.2010.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000452401
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.cattod.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027414854
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cej.2007.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043048030
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cej.2012.04.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010538006
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cep.2012.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006982958
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021578540
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ijheatfluidflow.2015.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031987822
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.inoche.2013.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004313293
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jcat.2011.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018606071
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jcat.2017.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084085454
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.memsci.2011.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015040564
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.memsci.2014.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014830551
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.micromeso.2005.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018034797
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.micromeso.2013.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039827925
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.micromeso.2015.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022454050
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.rser.2006.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005965050
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.taml.2017.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090571564
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s1003-9953(07)60023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022701333
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s1003-9953(07)60024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021227794
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s1872-2067(10)60113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038055922
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/cs4000766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422237
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/cs400377b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055422342
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ie071038o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055601501
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/ie1018904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055603112
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/ie401156x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055607329
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.4704283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098545690
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/10407782.2014.916101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041517598
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/10407782.2016.1277936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084163149
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/10407782.2017.1353380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091110602
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1080/10407790.2015.1012440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040450150
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1080/10916466.2017.1369111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093063033
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1089/ind.2014.0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059277389
195 rdf:type schema:CreativeWork
196 https://doi.org/10.22436/jmcs.012.02.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105002165
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.444812.f schema:alternateName Ton Duc Thang University
199 schema:name Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.444962.9 schema:alternateName Petroleum University of Technology
202 schema:name Department of Basic Science, Petroleum University of Technology, Ahwaz, Iran
203 Department of Gas Engineering, Petroleum University of Technology, Ahwaz, Iran
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.459471.a schema:alternateName Public Authority for Applied Education and Training
206 schema:name Department of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training, Adailiya, Kuwait
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...