Experimental investigation of a water/nanofluid jacket performance in stack heat recovery View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Houman Moradi Dalvand, Ali Jabari Moghadam

ABSTRACT

The effects of nanofluids (Al2O3–water) on the overall thermal performance of an annular enclosure (or jacket) are experimentally investigated which is used for recovering waste heat from a typical stack of a gas heater. In the initial stages of the heating process, the inner cylindrical wall becomes hotter, while the bulk fluid is nearly at the preceding uniform temperature; hence, the wall heat flux is strongly enhanced at the beginning. Afterward a decline in the wall heat flux is observed due to increasing Rayleigh number and correspondingly generating cellular flows in the annulus that leads to temperature enhancement of the liquid. Using nanofluids has the advantage of improving key parameters such as Nusselt number. Nanofluids with higher nanoparticle concentrations need less response time to react to any changes in thermal environment, and consequently they have smaller time constant. Higher convective heat transfer coefficient as well as greater temperature uniformity in the enclosure is achieved by selecting nanofluids with larger values of nanoparticle concentration. The results also reveal that convective heat transfer coefficient and Nusselt number of nanofluids are comparatively enhanced with time, since hotter base fluid results in higher effective thermal conductivity. More... »

PAGES

657-669

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7220-0

DOI

http://dx.doi.org/10.1007/s10973-018-7220-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101794251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Shahrood", 
          "id": "https://www.grid.ac/institutes/grid.440804.c", 
          "name": [
            "Faculty of Mechanical Engineering, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalvand", 
        "givenName": "Houman Moradi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shahrood", 
          "id": "https://www.grid.ac/institutes/grid.440804.c", 
          "name": [
            "Faculty of Mechanical Engineering, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moghadam", 
        "givenName": "Ali Jabari", 
        "id": "sg:person.013301230761.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301230761.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2009.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001193334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-014-1035-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003726502", 
          "https://doi.org/10.1007/s12206-014-1035-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006057854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007145349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007488369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00369-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009436639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011649261", 
          "https://doi.org/10.1186/1556-276x-6-456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-3771-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017823300", 
          "https://doi.org/10.1007/s10973-014-3771-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018733211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2963/jjtp.7.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020649950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024056241", 
          "https://doi.org/10.1007/s10973-016-5560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5560-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024056241", 
          "https://doi.org/10.1007/s10973-016-5560-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5868-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026573412", 
          "https://doi.org/10.1007/s10973-016-5868-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5868-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026573412", 
          "https://doi.org/10.1007/s10973-016-5868-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027826634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029440613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031663815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031909609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(88)90043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032907160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(88)90043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032907160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2014.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034911555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2015.12.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035110537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.06.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036227150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2015.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039618558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/321261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2010.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047759844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.t5093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084417191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2017.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090952305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6773-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092482349", 
          "https://doi.org/10.1007/s10973-017-6773-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6787-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092593348", 
          "https://doi.org/10.1007/s10973-017-6787-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17444-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099597348", 
          "https://doi.org/10.1038/s41598-017-17444-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2018.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100831947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7070-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101171318", 
          "https://doi.org/10.1007/s10973-018-7070-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The effects of nanofluids (Al2O3\u2013water) on the overall thermal performance of an annular enclosure (or jacket) are experimentally investigated which is used for recovering waste heat from a typical stack of a gas heater. In the initial stages of the heating process, the inner cylindrical wall becomes hotter, while the bulk fluid is nearly at the preceding uniform temperature; hence, the wall heat flux is strongly enhanced at the beginning. Afterward a decline in the wall heat flux is observed due to increasing Rayleigh number and correspondingly generating cellular flows in the annulus that leads to temperature enhancement of the liquid. Using nanofluids has the advantage of improving key parameters such as Nusselt number. Nanofluids with higher nanoparticle concentrations need less response time to react to any changes in thermal environment, and consequently they have smaller time constant. Higher convective heat transfer coefficient as well as greater temperature uniformity in the enclosure is achieved by selecting nanofluids with larger values of nanoparticle concentration. The results also reveal that convective heat transfer coefficient and Nusselt number of nanofluids are comparatively enhanced with time, since hotter base fluid results in higher effective thermal conductivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7220-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Experimental investigation of a water/nanofluid jacket performance in stack heat recovery", 
    "pagination": "657-669", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9aff3d27b517c581cf7415ccb9fd21e9a6f6be0e312bcc08715874d4f93dc25a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7220-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101794251"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7220-0", 
      "https://app.dimensions.ai/details/publication/pub.1101794251"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7220-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7220-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7220-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7220-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7220-0'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7220-0 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N694a8b83e0aa44dbb22a44f1850d8587
4 schema:citation sg:pub.10.1007/s10973-014-3771-x
5 sg:pub.10.1007/s10973-016-5560-1
6 sg:pub.10.1007/s10973-016-5868-x
7 sg:pub.10.1007/s10973-017-6773-7
8 sg:pub.10.1007/s10973-017-6787-1
9 sg:pub.10.1007/s10973-018-7070-9
10 sg:pub.10.1007/s12206-014-1035-0
11 sg:pub.10.1038/s41598-017-17444-5
12 sg:pub.10.1186/1556-276x-6-456
13 https://doi.org/10.1016/0894-1777(88)90043-x
14 https://doi.org/10.1016/j.applthermaleng.2015.12.122
15 https://doi.org/10.1016/j.apt.2015.12.011
16 https://doi.org/10.1016/j.enconman.2015.06.077
17 https://doi.org/10.1016/j.expthermflusci.2014.06.014
18 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035
19 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.037
20 https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.019
21 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
22 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.089
23 https://doi.org/10.1016/j.ijthermalsci.2009.09.002
24 https://doi.org/10.1016/j.ijthermalsci.2010.02.013
25 https://doi.org/10.1016/j.ijthermalsci.2018.01.031
26 https://doi.org/10.1016/j.jclepro.2017.08.014
27 https://doi.org/10.1016/j.molliq.2016.05.039
28 https://doi.org/10.1016/j.molliq.2016.12.013
29 https://doi.org/10.1016/j.powtec.2007.11.020
30 https://doi.org/10.1016/j.rser.2014.07.008
31 https://doi.org/10.1016/s0017-9310(03)00156-x
32 https://doi.org/10.1016/s0017-9310(99)00369-5
33 https://doi.org/10.1080/08916159808946559
34 https://doi.org/10.1155/2013/321261
35 https://doi.org/10.2514/1.t5093
36 https://doi.org/10.2963/jjtp.7.227
37 schema:datePublished 2019-01
38 schema:datePublishedReg 2019-01-01
39 schema:description The effects of nanofluids (Al2O3–water) on the overall thermal performance of an annular enclosure (or jacket) are experimentally investigated which is used for recovering waste heat from a typical stack of a gas heater. In the initial stages of the heating process, the inner cylindrical wall becomes hotter, while the bulk fluid is nearly at the preceding uniform temperature; hence, the wall heat flux is strongly enhanced at the beginning. Afterward a decline in the wall heat flux is observed due to increasing Rayleigh number and correspondingly generating cellular flows in the annulus that leads to temperature enhancement of the liquid. Using nanofluids has the advantage of improving key parameters such as Nusselt number. Nanofluids with higher nanoparticle concentrations need less response time to react to any changes in thermal environment, and consequently they have smaller time constant. Higher convective heat transfer coefficient as well as greater temperature uniformity in the enclosure is achieved by selecting nanofluids with larger values of nanoparticle concentration. The results also reveal that convective heat transfer coefficient and Nusselt number of nanofluids are comparatively enhanced with time, since hotter base fluid results in higher effective thermal conductivity.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N527682a0112c47288534b08287bc692c
44 N58ca99bb09dd4e839eb9057d1040cbac
45 sg:journal.1294862
46 schema:name Experimental investigation of a water/nanofluid jacket performance in stack heat recovery
47 schema:pagination 657-669
48 schema:productId N5310b1b635b94df6ac13e58eee60ea74
49 N8f45d09e8d32412c8cefeca87b583050
50 Nca76affc10724b16800f7001ac7012bf
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101794251
52 https://doi.org/10.1007/s10973-018-7220-0
53 schema:sdDatePublished 2019-04-11T13:11
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb0a516d8bb7f4169a0b537f8a64a9ccc
56 schema:url https://link.springer.com/10.1007%2Fs10973-018-7220-0
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N317f3aa1205b47a6be3f8382e1cc7d4d rdf:first sg:person.013301230761.53
61 rdf:rest rdf:nil
62 N527682a0112c47288534b08287bc692c schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N5310b1b635b94df6ac13e58eee60ea74 schema:name readcube_id
65 schema:value 9aff3d27b517c581cf7415ccb9fd21e9a6f6be0e312bcc08715874d4f93dc25a
66 rdf:type schema:PropertyValue
67 N58ca99bb09dd4e839eb9057d1040cbac schema:volumeNumber 135
68 rdf:type schema:PublicationVolume
69 N694a8b83e0aa44dbb22a44f1850d8587 rdf:first Ncf4c17c018f44b72b0bbdef0e306cca8
70 rdf:rest N317f3aa1205b47a6be3f8382e1cc7d4d
71 N8f45d09e8d32412c8cefeca87b583050 schema:name doi
72 schema:value 10.1007/s10973-018-7220-0
73 rdf:type schema:PropertyValue
74 Nb0a516d8bb7f4169a0b537f8a64a9ccc schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nca76affc10724b16800f7001ac7012bf schema:name dimensions_id
77 schema:value pub.1101794251
78 rdf:type schema:PropertyValue
79 Ncf4c17c018f44b72b0bbdef0e306cca8 schema:affiliation https://www.grid.ac/institutes/grid.440804.c
80 schema:familyName Dalvand
81 schema:givenName Houman Moradi
82 rdf:type schema:Person
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
87 schema:name Interdisciplinary Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1294862 schema:issn 1388-6150
90 1572-8943
91 schema:name Journal of Thermal Analysis and Calorimetry
92 rdf:type schema:Periodical
93 sg:person.013301230761.53 schema:affiliation https://www.grid.ac/institutes/grid.440804.c
94 schema:familyName Moghadam
95 schema:givenName Ali Jabari
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301230761.53
97 rdf:type schema:Person
98 sg:pub.10.1007/s10973-014-3771-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017823300
99 https://doi.org/10.1007/s10973-014-3771-x
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10973-016-5560-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056241
102 https://doi.org/10.1007/s10973-016-5560-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10973-016-5868-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026573412
105 https://doi.org/10.1007/s10973-016-5868-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10973-017-6773-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092482349
108 https://doi.org/10.1007/s10973-017-6773-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10973-017-6787-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092593348
111 https://doi.org/10.1007/s10973-017-6787-1
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10973-018-7070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101171318
114 https://doi.org/10.1007/s10973-018-7070-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12206-014-1035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003726502
117 https://doi.org/10.1007/s12206-014-1035-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/s41598-017-17444-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597348
120 https://doi.org/10.1038/s41598-017-17444-5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1556-276x-6-456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011649261
123 https://doi.org/10.1186/1556-276x-6-456
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0894-1777(88)90043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032907160
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.applthermaleng.2015.12.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035110537
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.apt.2015.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039618558
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.enconman.2015.06.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036227150
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.expthermflusci.2014.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034911555
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154919
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029440613
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006057854
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018733211
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031663815
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ijthermalsci.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001193334
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ijthermalsci.2010.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047759844
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ijthermalsci.2018.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100831947
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jclepro.2017.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090952305
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.molliq.2016.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027826634
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.molliq.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031909609
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.powtec.2007.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007145349
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.rser.2014.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007488369
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0017-9310(03)00156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138982
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0017-9310(99)00369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009436639
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1155/2013/321261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824948
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2514/1.t5093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084417191
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2963/jjtp.7.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020649950
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.440804.c schema:alternateName University of Shahrood
174 schema:name Faculty of Mechanical Engineering, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...