Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Mostafa Keshavarz Moraveji, Ramtin Barzegarian, Mehdi Bahiraei, Matin Barzegarian, Alireza Aloueyan, Somchai Wongwises

ABSTRACT

The present work deals with numerical investigations on heat transfer characteristics and friction factor of aqueous CuO nanofluids flow in a set of four microchannels connected in parallel under laminar regime. For each single phase, volume of fluid, mixture and Eulerian models, a particular computer code is developed to carefully simulate this problem. The three-dimensional steady-state governing equations are solved through finite volume method. The primary aim of this study is to comparatively distinguish the most appropriate and accurate model for numerical studies of nanofluids in microchannels. The results are compared with one another and the data obtained from an experimental work. Regarding the results, an acceptable consistency is observed for all models with the experimental data. The current study truly demonstrates that applying single-phase model to simulate and evaluate the laminar flow of CuO–water nanofluid inside microchannels with uniform wall temperature is more modest, precise and reliable compared with two-phase models. More... »

PAGES

671-683

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-018-7181-3

DOI

http://dx.doi.org/10.1007/s10973-018-7181-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101548455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amirkabir University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411368.9", 
          "name": [
            "Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keshavarz Moraveji", 
        "givenName": "Mostafa", 
        "id": "sg:person.01325520675.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325520675.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Science and Research Branch", 
          "id": "https://www.grid.ac/institutes/grid.472472.0", 
          "name": [
            "Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barzegarian", 
        "givenName": "Ramtin", 
        "id": "sg:person.010371244003.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371244003.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kermanshah University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.459724.9", 
          "name": [
            "Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahiraei", 
        "givenName": "Mehdi", 
        "id": "sg:person.014522053627.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522053627.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Tehran", 
          "id": "https://www.grid.ac/institutes/grid.411463.5", 
          "name": [
            "Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barzegarian", 
        "givenName": "Matin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Tehran", 
          "id": "https://www.grid.ac/institutes/grid.411463.5", 
          "name": [
            "Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aloueyan", 
        "givenName": "Alireza", 
        "id": "sg:person.015020222203.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015020222203.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000247935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002052851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.03.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002535009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2012.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003994264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004211509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006861407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007507875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008473130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2014.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008819579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.05.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010328521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011781036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2011.08.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013833965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.01.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014813013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018492216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020211510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020382652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2012.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022818154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jctn.2014.3309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025970918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5868-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026573412", 
          "https://doi.org/10.1007/s10973-016-5868-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-016-5868-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026573412", 
          "https://doi.org/10.1007/s10973-016-5868-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026605870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026988978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2010.07.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031727458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034297608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2013.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034961152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2015.02.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035458077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2006.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035909941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2016.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036871792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2016.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038849292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2011.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039070625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2009.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039403074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039486022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2093936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042044970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.02.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042374148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047663873", 
          "https://doi.org/10.1186/1556-276x-6-471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050251335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052081713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/interjfluidmechres.v42.i5.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068143027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18869/acadpub.jafm.67.221.22830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084375466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molliq.2017.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084773087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpr.2017.02.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085092989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2017.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085382858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6500-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085886517", 
          "https://doi.org/10.1007/s10973-017-6500-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6500-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085886517", 
          "https://doi.org/10.1007/s10973-017-6500-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2017.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085926825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2017.06.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086072639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2017.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086086810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091241023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6624-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091406160", 
          "https://doi.org/10.1007/s10973-017-6624-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6649-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091477636", 
          "https://doi.org/10.1007/s10973-017-6649-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2017.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091773121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6680-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091836607", 
          "https://doi.org/10.1007/s10973-017-6680-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2017.09.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092065081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6790-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092571499", 
          "https://doi.org/10.1007/s10973-017-6790-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6813-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092579293", 
          "https://doi.org/10.1007/s10973-017-6813-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6798-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092687414", 
          "https://doi.org/10.1007/s10973-017-6798-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6865-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099693495", 
          "https://doi.org/10.1007/s10973-017-6865-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-017-6865-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099693495", 
          "https://doi.org/10.1007/s10973-017-6865-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2018.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100349982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2018.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100834587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2018.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100834587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100959518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100990991", 
          "https://doi.org/10.1007/s10973-018-7037-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-018-7037-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100990991", 
          "https://doi.org/10.1007/s10973-018-7037-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The present work deals with numerical investigations on heat transfer characteristics and friction factor of aqueous CuO nanofluids flow in a set of four microchannels connected in parallel under laminar regime. For each single phase, volume of fluid, mixture and Eulerian models, a particular computer code is developed to carefully simulate this problem. The three-dimensional steady-state governing equations are solved through finite volume method. The primary aim of this study is to comparatively distinguish the most appropriate and accurate model for numerical studies of nanofluids in microchannels. The results are compared with one another and the data obtained from an experimental work. Regarding the results, an acceptable consistency is observed for all models with the experimental data. The current study truly demonstrates that applying single-phase model to simulate and evaluate the laminar flow of CuO\u2013water nanofluid inside microchannels with uniform wall temperature is more modest, precise and reliable compared with two-phase models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-018-7181-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "135"
      }
    ], 
    "name": "Numerical evaluation on thermal\u2013hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels", 
    "pagination": "671-683", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f0b8c61cd2b276999b8fed12fe8073b77550f5062ab07bac470c0ca8770d5288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-018-7181-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101548455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-018-7181-3", 
      "https://app.dimensions.ai/details/publication/pub.1101548455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29200_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-018-7181-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7181-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7181-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7181-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-018-7181-3'


 

This table displays all metadata directly associated to this object as RDF triples.

302 TRIPLES      21 PREDICATES      88 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-018-7181-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N9d9a9f7f96e64784911d1a256aadd472
4 schema:citation sg:pub.10.1007/s10973-016-5868-x
5 sg:pub.10.1007/s10973-017-6500-4
6 sg:pub.10.1007/s10973-017-6624-6
7 sg:pub.10.1007/s10973-017-6649-x
8 sg:pub.10.1007/s10973-017-6680-y
9 sg:pub.10.1007/s10973-017-6790-6
10 sg:pub.10.1007/s10973-017-6798-y
11 sg:pub.10.1007/s10973-017-6813-3
12 sg:pub.10.1007/s10973-017-6865-4
13 sg:pub.10.1007/s10973-018-7037-x
14 sg:pub.10.1186/1556-276x-6-471
15 https://doi.org/10.1016/j.amc.2014.03.106
16 https://doi.org/10.1016/j.applthermaleng.2006.02.036
17 https://doi.org/10.1016/j.applthermaleng.2006.09.028
18 https://doi.org/10.1016/j.applthermaleng.2009.07.003
19 https://doi.org/10.1016/j.applthermaleng.2010.06.023
20 https://doi.org/10.1016/j.applthermaleng.2010.07.019
21 https://doi.org/10.1016/j.applthermaleng.2011.10.023
22 https://doi.org/10.1016/j.applthermaleng.2016.01.140
23 https://doi.org/10.1016/j.applthermaleng.2016.02.071
24 https://doi.org/10.1016/j.applthermaleng.2016.10.035
25 https://doi.org/10.1016/j.applthermaleng.2018.01.041
26 https://doi.org/10.1016/j.apt.2017.04.022
27 https://doi.org/10.1016/j.enconman.2010.07.052
28 https://doi.org/10.1016/j.enconman.2015.05.073
29 https://doi.org/10.1016/j.enconman.2015.10.015
30 https://doi.org/10.1016/j.enconman.2017.09.025
31 https://doi.org/10.1016/j.energy.2015.02.103
32 https://doi.org/10.1016/j.expthermflusci.2015.11.018
33 https://doi.org/10.1016/j.expthermflusci.2016.06.021
34 https://doi.org/10.1016/j.expthermflusci.2017.08.017
35 https://doi.org/10.1016/j.icheatmasstransfer.2011.06.011
36 https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001
37 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.003
38 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024
39 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.012
40 https://doi.org/10.1016/j.icheatmasstransfer.2017.05.021
41 https://doi.org/10.1016/j.ijheatfluidflow.2012.05.005
42 https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
43 https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.018
44 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
45 https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.127
46 https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.015
47 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008
48 https://doi.org/10.1016/j.ijrefrig.2013.08.020
49 https://doi.org/10.1016/j.ijrefrig.2014.05.009
50 https://doi.org/10.1016/j.ijthermalsci.2006.03.009
51 https://doi.org/10.1016/j.matpr.2017.02.283
52 https://doi.org/10.1016/j.molliq.2016.05.022
53 https://doi.org/10.1016/j.molliq.2017.04.030
54 https://doi.org/10.1016/j.physe.2017.06.013
55 https://doi.org/10.1016/j.physe.2017.06.015
56 https://doi.org/10.1016/j.powtec.2012.11.030
57 https://doi.org/10.1016/j.powtec.2017.09.046
58 https://doi.org/10.1016/j.renene.2011.08.056
59 https://doi.org/10.1016/j.renene.2018.01.023
60 https://doi.org/10.1016/j.rser.2010.08.018
61 https://doi.org/10.1063/1.2093936
62 https://doi.org/10.1166/jctn.2014.3309
63 https://doi.org/10.1615/interjfluidmechres.v42.i5.10
64 https://doi.org/10.18869/acadpub.jafm.67.221.22830
65 schema:datePublished 2019-01
66 schema:datePublishedReg 2019-01-01
67 schema:description The present work deals with numerical investigations on heat transfer characteristics and friction factor of aqueous CuO nanofluids flow in a set of four microchannels connected in parallel under laminar regime. For each single phase, volume of fluid, mixture and Eulerian models, a particular computer code is developed to carefully simulate this problem. The three-dimensional steady-state governing equations are solved through finite volume method. The primary aim of this study is to comparatively distinguish the most appropriate and accurate model for numerical studies of nanofluids in microchannels. The results are compared with one another and the data obtained from an experimental work. Regarding the results, an acceptable consistency is observed for all models with the experimental data. The current study truly demonstrates that applying single-phase model to simulate and evaluate the laminar flow of CuO–water nanofluid inside microchannels with uniform wall temperature is more modest, precise and reliable compared with two-phase models.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree false
71 schema:isPartOf N3331cb083559459ca53cb6649ebf572d
72 Nead8b943736242dc91a3e7456657b976
73 sg:journal.1294862
74 schema:name Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels
75 schema:pagination 671-683
76 schema:productId N4c2cf892721744a29d81d85986d89cb1
77 Ndbb08f9211a747bcaf0f6e9aa27997f3
78 Nff32493d71f745628f8469f06e097127
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101548455
80 https://doi.org/10.1007/s10973-018-7181-3
81 schema:sdDatePublished 2019-04-11T11:54
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N05a140e5814a47e3a6d7e15a15e302d9
84 schema:url https://link.springer.com/10.1007%2Fs10973-018-7181-3
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0036021b9c3747f38e2b28b164a21393 rdf:first Nc5dbd8227fd04d7f898aca9cdc23f9d9
89 rdf:rest N5539659d59cd42c5afdcce7bf153c9a0
90 N050d6abccded4f2bbb1838b3d0068b06 rdf:first sg:person.010371244003.44
91 rdf:rest N6386664af69b4ab3ad95b0ffe206dac3
92 N05a140e5814a47e3a6d7e15a15e302d9 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N3331cb083559459ca53cb6649ebf572d schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N4c2cf892721744a29d81d85986d89cb1 schema:name doi
97 schema:value 10.1007/s10973-018-7181-3
98 rdf:type schema:PropertyValue
99 N4fc5e7e6c8304834a53e51a27959e523 rdf:first sg:person.012267021412.00
100 rdf:rest rdf:nil
101 N5539659d59cd42c5afdcce7bf153c9a0 rdf:first sg:person.015020222203.42
102 rdf:rest N4fc5e7e6c8304834a53e51a27959e523
103 N6386664af69b4ab3ad95b0ffe206dac3 rdf:first sg:person.014522053627.92
104 rdf:rest N0036021b9c3747f38e2b28b164a21393
105 N9d9a9f7f96e64784911d1a256aadd472 rdf:first sg:person.01325520675.64
106 rdf:rest N050d6abccded4f2bbb1838b3d0068b06
107 Nc5dbd8227fd04d7f898aca9cdc23f9d9 schema:affiliation https://www.grid.ac/institutes/grid.411463.5
108 schema:familyName Barzegarian
109 schema:givenName Matin
110 rdf:type schema:Person
111 Ndbb08f9211a747bcaf0f6e9aa27997f3 schema:name dimensions_id
112 schema:value pub.1101548455
113 rdf:type schema:PropertyValue
114 Nead8b943736242dc91a3e7456657b976 schema:volumeNumber 135
115 rdf:type schema:PublicationVolume
116 Nff32493d71f745628f8469f06e097127 schema:name readcube_id
117 schema:value f0b8c61cd2b276999b8fed12fe8073b77550f5062ab07bac470c0ca8770d5288
118 rdf:type schema:PropertyValue
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
123 schema:name Interdisciplinary Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1294862 schema:issn 1388-6150
126 1572-8943
127 schema:name Journal of Thermal Analysis and Calorimetry
128 rdf:type schema:Periodical
129 sg:person.010371244003.44 schema:affiliation https://www.grid.ac/institutes/grid.472472.0
130 schema:familyName Barzegarian
131 schema:givenName Ramtin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371244003.44
133 rdf:type schema:Person
134 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
135 schema:familyName Wongwises
136 schema:givenName Somchai
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
138 rdf:type schema:Person
139 sg:person.01325520675.64 schema:affiliation https://www.grid.ac/institutes/grid.411368.9
140 schema:familyName Keshavarz Moraveji
141 schema:givenName Mostafa
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325520675.64
143 rdf:type schema:Person
144 sg:person.014522053627.92 schema:affiliation https://www.grid.ac/institutes/grid.459724.9
145 schema:familyName Bahiraei
146 schema:givenName Mehdi
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014522053627.92
148 rdf:type schema:Person
149 sg:person.015020222203.42 schema:affiliation https://www.grid.ac/institutes/grid.411463.5
150 schema:familyName Aloueyan
151 schema:givenName Alireza
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015020222203.42
153 rdf:type schema:Person
154 sg:pub.10.1007/s10973-016-5868-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026573412
155 https://doi.org/10.1007/s10973-016-5868-x
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10973-017-6500-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886517
158 https://doi.org/10.1007/s10973-017-6500-4
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10973-017-6624-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091406160
161 https://doi.org/10.1007/s10973-017-6624-6
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10973-017-6649-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091477636
164 https://doi.org/10.1007/s10973-017-6649-x
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10973-017-6680-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091836607
167 https://doi.org/10.1007/s10973-017-6680-y
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s10973-017-6790-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092571499
170 https://doi.org/10.1007/s10973-017-6790-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s10973-017-6798-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092687414
173 https://doi.org/10.1007/s10973-017-6798-y
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s10973-017-6813-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092579293
176 https://doi.org/10.1007/s10973-017-6813-3
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s10973-017-6865-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693495
179 https://doi.org/10.1007/s10973-017-6865-4
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10973-018-7037-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1100990991
182 https://doi.org/10.1007/s10973-018-7037-x
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1556-276x-6-471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047663873
185 https://doi.org/10.1186/1556-276x-6-471
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.amc.2014.03.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002535009
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.applthermaleng.2006.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034433008
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.applthermaleng.2006.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007507875
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.applthermaleng.2009.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039403074
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.applthermaleng.2010.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004211509
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.applthermaleng.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052081713
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.applthermaleng.2011.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039070625
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.applthermaleng.2016.01.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014813013
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.applthermaleng.2016.02.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042374148
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.applthermaleng.2016.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011781036
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.applthermaleng.2018.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349982
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.apt.2017.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085382858
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.enconman.2010.07.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031727458
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.enconman.2015.05.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010328521
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.enconman.2015.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008473130
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.enconman.2017.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091773121
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.energy.2015.02.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035458077
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.expthermflusci.2015.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026605870
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.expthermflusci.2016.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036871792
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.expthermflusci.2017.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091241023
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.icheatmasstransfer.2011.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006861407
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.icheatmasstransfer.2011.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039486022
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492216
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.icheatmasstransfer.2012.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020382652
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050251335
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.icheatmasstransfer.2017.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085926825
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.ijheatfluidflow.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022818154
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034297608
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020211510
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319087
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000247935
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100959518
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.ijmultiphaseflow.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002052851
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.ijrefrig.2013.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034961152
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.ijrefrig.2014.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008819579
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.ijthermalsci.2006.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035909941
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/j.matpr.2017.02.283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085092989
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/j.molliq.2016.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038849292
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/j.molliq.2017.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084773087
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.physe.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086086810
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.physe.2017.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086072639
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/j.powtec.2012.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003994264
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.powtec.2017.09.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092065081
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/j.renene.2011.08.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013833965
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.renene.2018.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100834587
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.rser.2010.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026988978
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1063/1.2093936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042044970
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1166/jctn.2014.3309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025970918
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1615/interjfluidmechres.v42.i5.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068143027
284 rdf:type schema:CreativeWork
285 https://doi.org/10.18869/acadpub.jafm.67.221.22830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084375466
286 rdf:type schema:CreativeWork
287 https://www.grid.ac/institutes/grid.411368.9 schema:alternateName Amirkabir University of Technology
288 schema:name Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413, Tehran, Iran
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.411463.5 schema:alternateName Islamic Azad University, Tehran
291 schema:name Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
292 Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
295 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.459724.9 schema:alternateName Kermanshah University of Technology
298 schema:name Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.472472.0 schema:alternateName Islamic Azad University, Science and Research Branch
301 schema:name Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
302 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...