Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08

AUTHORS

Lokmane Abdelouahed, Sébastien Leveneur, Lamiae Vernieres-Hassimi, Laurent Balland, Bechara Taouk

ABSTRACT

This paper discusses the different methods for determining the kinetic parameters (activation energy and pre-exponential factor) of biomass (beechwood and flax shives) pyrolysis based on Kissinger method, isoconversional methods (Kissinger–Akahira–Sunose and Friedman) and based model (nonlinear least square minimization and optimization by genetic algorithm). Because of the widely dispersed values of activation energy and pre-exponential factor of three pseudo-components of the biomass (cellulose, hemicellulose and lignin) found in the literature, the pyrolysis of cellulose, hemicellulose and lignin was also studied. This paper shows that kinetic parameters are very sensitive to methods used. The comparison of results shows a large difference for the same experimental results even for pure pseudo-components. Based on results comparison, we think that Kissinger method remains the best method for kinetic parameters determination. Indeed, Kissinger relation takes into account the biomass structure effect and the mineral content. Isoconversional methods are also very suitable for low and medium conversion rate. Despite the fact that based methods are considered to be robust methods for the estimation of kinetic parameters in chemical engineering, these methods may misestimate the activation energy and pre-exponential factor for cellulose, hemicellulose and lignin. More... »

PAGES

1201-1213

References to SciGraph publications

  • 2017-02. Combustion process of torrefied wood biomass in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2012-11. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1964-01. Kinetic Parameters from Thermogravimetric Data in NATURE
  • 2013-01. Mass transfer limitation in thermogravimetry of biomass gasification in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1993. Modeling of Transport Phenomena and Kinetics of Biomass Pyrolysis in ADVANCES IN THERMOCHEMICAL BIOMASS CONVERSION
  • 2016-02. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-017-6212-9

    DOI

    http://dx.doi.org/10.1007/s10973-017-6212-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084028452


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
              "id": "https://www.grid.ac/institutes/grid.435013.0", 
              "name": [
                "Laboratoire de S\u00e9curit\u00e9 des Proc\u00e9d\u00e9s Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdelouahed", 
            "givenName": "Lokmane", 
            "id": "sg:person.010501334243.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501334243.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c5bo Akademi University", 
              "id": "https://www.grid.ac/institutes/grid.13797.3b", 
              "name": [
                "Laboratoire de S\u00e9curit\u00e9 des Proc\u00e9d\u00e9s Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France", 
                "Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, \u00c5bo Akademi University, Biskopsgatan 8, 20500, \u00c5bo, Turku, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leveneur", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014260247735.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260247735.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
              "id": "https://www.grid.ac/institutes/grid.435013.0", 
              "name": [
                "Laboratoire de S\u00e9curit\u00e9 des Proc\u00e9d\u00e9s Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vernieres-Hassimi", 
            "givenName": "Lamiae", 
            "id": "sg:person.014423615037.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423615037.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
              "id": "https://www.grid.ac/institutes/grid.435013.0", 
              "name": [
                "Laboratoire de S\u00e9curit\u00e9 des Proc\u00e9d\u00e9s Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balland", 
            "givenName": "Laurent", 
            "id": "sg:person.013073072133.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073072133.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut National des Sciences Appliqu\u00e9es de Rouen", 
              "id": "https://www.grid.ac/institutes/grid.435013.0", 
              "name": [
                "Laboratoire de S\u00e9curit\u00e9 des Proc\u00e9d\u00e9s Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taouk", 
            "givenName": "Bechara", 
            "id": "sg:person.0735031400.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735031400.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-011-2018-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001562959", 
              "https://doi.org/10.1007/s10973-011-2018-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2015.05.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001840141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7439(99)00057-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002379914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004286317", 
              "https://doi.org/10.1007/s10973-016-5731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-016-5731-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004286317", 
              "https://doi.org/10.1007/s10973-016-5731-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2012.04.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005253152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2014.01.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010189822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-012-2400-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010746548", 
              "https://doi.org/10.1007/s10973-012-2400-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jaap.2011.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014403171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-2370(00)00200-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015891588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2011.02.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016660607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/201068a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774026", 
              "https://doi.org/10.1038/201068a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6031(99)00253-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022341351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuproc.2015.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028260569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-015-4707-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028736418", 
              "https://doi.org/10.1007/s10973-015-4707-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tca.2009.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029237177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0255-2701(01)00164-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029679438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2011.12.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033252022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2008.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034212742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/app.1961.070051506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036037598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biombioe.2010.08.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037078141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2014.10.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037936472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2012.08.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041481279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pecs.2006.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044392350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2015.07.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045945178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-1336-6_70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046815513", 
              "https://doi.org/10.1007/978-94-011-1336-6_70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3gc36958g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048858018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6031(03)00144-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050807640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6031(03)00144-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050807640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2015.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051686099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051980360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac60131a045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055034346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci950062m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci950062m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef970212q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055483265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef970212q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055483265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie0201157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055596114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie0201157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055596114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie4021123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055607738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie801299z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055643625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie801299z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055643625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie980601n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055647400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie980601n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055647400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050589u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050589u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060134"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-08", 
        "datePublishedReg": "2017-08-01", 
        "description": "This paper discusses the different methods for determining the kinetic parameters (activation energy and pre-exponential factor) of biomass (beechwood and flax shives) pyrolysis based on Kissinger method, isoconversional methods (Kissinger\u2013Akahira\u2013Sunose and Friedman) and based model (nonlinear least square minimization and optimization by genetic algorithm). Because of the widely dispersed values of activation energy and pre-exponential factor of three pseudo-components of the biomass (cellulose, hemicellulose and lignin) found in the literature, the pyrolysis of cellulose, hemicellulose and lignin was also studied. This paper shows that kinetic parameters are very sensitive to methods used. The comparison of results shows a large difference for the same experimental results even for pure pseudo-components. Based on results comparison, we think that Kissinger method remains the best method for kinetic parameters determination. Indeed, Kissinger relation takes into account the biomass structure effect and the mineral content. Isoconversional methods are also very suitable for low and medium conversion rate. Despite the fact that based methods are considered to be robust methods for the estimation of kinetic parameters in chemical engineering, these methods may misestimate the activation energy and pre-exponential factor for cellulose, hemicellulose and lignin.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10973-017-6212-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "129"
          }
        ], 
        "name": "Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis", 
        "pagination": "1201-1213", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "46815a4795fc1d0906af04c05e3c9ffeb1ce6d8c1ed64de1ff14d92642bdf33c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-017-6212-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084028452"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-017-6212-9", 
          "https://app.dimensions.ai/details/publication/pub.1084028452"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89804_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10973-017-6212-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-017-6212-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-017-6212-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-017-6212-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-017-6212-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    210 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-017-6212-9 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N5a285ca6949d4abaacd588826ec5b56e
    4 schema:citation sg:pub.10.1007/978-94-011-1336-6_70
    5 sg:pub.10.1007/s10973-011-2018-3
    6 sg:pub.10.1007/s10973-012-2400-9
    7 sg:pub.10.1007/s10973-015-4707-9
    8 sg:pub.10.1007/s10973-016-5731-0
    9 sg:pub.10.1038/201068a0
    10 https://doi.org/10.1002/app.1961.070051506
    11 https://doi.org/10.1016/j.apenergy.2011.12.056
    12 https://doi.org/10.1016/j.biombioe.2010.08.067
    13 https://doi.org/10.1016/j.biortech.2008.02.003
    14 https://doi.org/10.1016/j.biortech.2011.02.060
    15 https://doi.org/10.1016/j.biortech.2012.01.001
    16 https://doi.org/10.1016/j.biortech.2014.10.028
    17 https://doi.org/10.1016/j.biortech.2015.05.062
    18 https://doi.org/10.1016/j.biortech.2015.07.007
    19 https://doi.org/10.1016/j.enconman.2012.08.017
    20 https://doi.org/10.1016/j.enconman.2015.07.077
    21 https://doi.org/10.1016/j.fuel.2012.04.023
    22 https://doi.org/10.1016/j.fuel.2014.01.014
    23 https://doi.org/10.1016/j.fuproc.2015.02.018
    24 https://doi.org/10.1016/j.jaap.2011.01.004
    25 https://doi.org/10.1016/j.pecs.2006.12.001
    26 https://doi.org/10.1016/j.tca.2009.10.003
    27 https://doi.org/10.1016/s0040-6031(03)00144-8
    28 https://doi.org/10.1016/s0040-6031(99)00253-1
    29 https://doi.org/10.1016/s0165-2370(00)00200-x
    30 https://doi.org/10.1016/s0169-7439(99)00057-x
    31 https://doi.org/10.1016/s0255-2701(01)00164-7
    32 https://doi.org/10.1021/ac60131a045
    33 https://doi.org/10.1021/ci950062m
    34 https://doi.org/10.1021/ef970212q
    35 https://doi.org/10.1021/ie0201157
    36 https://doi.org/10.1021/ie4021123
    37 https://doi.org/10.1021/ie801299z
    38 https://doi.org/10.1021/ie980601n
    39 https://doi.org/10.1021/jp050589u
    40 https://doi.org/10.1039/c3gc36958g
    41 schema:datePublished 2017-08
    42 schema:datePublishedReg 2017-08-01
    43 schema:description This paper discusses the different methods for determining the kinetic parameters (activation energy and pre-exponential factor) of biomass (beechwood and flax shives) pyrolysis based on Kissinger method, isoconversional methods (Kissinger–Akahira–Sunose and Friedman) and based model (nonlinear least square minimization and optimization by genetic algorithm). Because of the widely dispersed values of activation energy and pre-exponential factor of three pseudo-components of the biomass (cellulose, hemicellulose and lignin) found in the literature, the pyrolysis of cellulose, hemicellulose and lignin was also studied. This paper shows that kinetic parameters are very sensitive to methods used. The comparison of results shows a large difference for the same experimental results even for pure pseudo-components. Based on results comparison, we think that Kissinger method remains the best method for kinetic parameters determination. Indeed, Kissinger relation takes into account the biomass structure effect and the mineral content. Isoconversional methods are also very suitable for low and medium conversion rate. Despite the fact that based methods are considered to be robust methods for the estimation of kinetic parameters in chemical engineering, these methods may misestimate the activation energy and pre-exponential factor for cellulose, hemicellulose and lignin.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree false
    47 schema:isPartOf N64250edb5a29401387430997ea743c80
    48 Nf2fcaa77e199496a8a5eca01aa4de9b6
    49 sg:journal.1294862
    50 schema:name Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis
    51 schema:pagination 1201-1213
    52 schema:productId N278a462f879f468482c086ff756b7a00
    53 N837dca245bc14866b4838ca81a07a2e4
    54 Nfd1b1c1198244e349d07a648805e0426
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028452
    56 https://doi.org/10.1007/s10973-017-6212-9
    57 schema:sdDatePublished 2019-04-11T09:56
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N1f5cdcdb3ccd4fc19be3c07efd722537
    60 schema:url https://link.springer.com/10.1007%2Fs10973-017-6212-9
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N00da10789f244cbcb5980108f9fab179 rdf:first sg:person.013073072133.83
    65 rdf:rest N66868124df724ab6aab63bf22e52bb38
    66 N1f5cdcdb3ccd4fc19be3c07efd722537 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N278a462f879f468482c086ff756b7a00 schema:name doi
    69 schema:value 10.1007/s10973-017-6212-9
    70 rdf:type schema:PropertyValue
    71 N5a285ca6949d4abaacd588826ec5b56e rdf:first sg:person.010501334243.27
    72 rdf:rest Ne66349a5d89741a3a32532acc2a4870b
    73 N64250edb5a29401387430997ea743c80 schema:issueNumber 2
    74 rdf:type schema:PublicationIssue
    75 N66868124df724ab6aab63bf22e52bb38 rdf:first sg:person.0735031400.84
    76 rdf:rest rdf:nil
    77 N837dca245bc14866b4838ca81a07a2e4 schema:name dimensions_id
    78 schema:value pub.1084028452
    79 rdf:type schema:PropertyValue
    80 Ne66349a5d89741a3a32532acc2a4870b rdf:first sg:person.014260247735.32
    81 rdf:rest Nf83e9526a92f415f919ef72d5a2e4634
    82 Nf2fcaa77e199496a8a5eca01aa4de9b6 schema:volumeNumber 129
    83 rdf:type schema:PublicationVolume
    84 Nf83e9526a92f415f919ef72d5a2e4634 rdf:first sg:person.014423615037.74
    85 rdf:rest N00da10789f244cbcb5980108f9fab179
    86 Nfd1b1c1198244e349d07a648805e0426 schema:name readcube_id
    87 schema:value 46815a4795fc1d0906af04c05e3c9ffeb1ce6d8c1ed64de1ff14d92642bdf33c
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Chemical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Physical Chemistry (incl. Structural)
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1294862 schema:issn 1388-6150
    96 1572-8943
    97 schema:name Journal of Thermal Analysis and Calorimetry
    98 rdf:type schema:Periodical
    99 sg:person.010501334243.27 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
    100 schema:familyName Abdelouahed
    101 schema:givenName Lokmane
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010501334243.27
    103 rdf:type schema:Person
    104 sg:person.013073072133.83 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
    105 schema:familyName Balland
    106 schema:givenName Laurent
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013073072133.83
    108 rdf:type schema:Person
    109 sg:person.014260247735.32 schema:affiliation https://www.grid.ac/institutes/grid.13797.3b
    110 schema:familyName Leveneur
    111 schema:givenName Sébastien
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260247735.32
    113 rdf:type schema:Person
    114 sg:person.014423615037.74 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
    115 schema:familyName Vernieres-Hassimi
    116 schema:givenName Lamiae
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423615037.74
    118 rdf:type schema:Person
    119 sg:person.0735031400.84 schema:affiliation https://www.grid.ac/institutes/grid.435013.0
    120 schema:familyName Taouk
    121 schema:givenName Bechara
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735031400.84
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-94-011-1336-6_70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046815513
    125 https://doi.org/10.1007/978-94-011-1336-6_70
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10973-011-2018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001562959
    128 https://doi.org/10.1007/s10973-011-2018-3
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10973-012-2400-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010746548
    131 https://doi.org/10.1007/s10973-012-2400-9
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s10973-015-4707-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028736418
    134 https://doi.org/10.1007/s10973-015-4707-9
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10973-016-5731-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004286317
    137 https://doi.org/10.1007/s10973-016-5731-0
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/201068a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774026
    140 https://doi.org/10.1038/201068a0
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1002/app.1961.070051506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036037598
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.apenergy.2011.12.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033252022
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.biombioe.2010.08.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037078141
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.biortech.2008.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212742
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.biortech.2011.02.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016660607
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.biortech.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051980360
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.biortech.2014.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037936472
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.biortech.2015.05.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840141
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.biortech.2015.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051686099
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.enconman.2012.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041481279
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.enconman.2015.07.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045945178
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.fuel.2012.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005253152
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.fuel.2014.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010189822
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.fuproc.2015.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028260569
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.jaap.2011.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014403171
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.pecs.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044392350
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.tca.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029237177
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0040-6031(03)00144-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050807640
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/s0040-6031(99)00253-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022341351
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0165-2370(00)00200-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015891588
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s0169-7439(99)00057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002379914
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/s0255-2701(01)00164-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029679438
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1021/ac60131a045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055034346
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1021/ci950062m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404908
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1021/ef970212q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055483265
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1021/ie0201157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055596114
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1021/ie4021123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055607738
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1021/ie801299z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055643625
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/ie980601n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055647400
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1021/jp050589u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056060134
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1039/c3gc36958g schema:sameAs https://app.dimensions.ai/details/publication/pub.1048858018
    203 rdf:type schema:CreativeWork
    204 https://www.grid.ac/institutes/grid.13797.3b schema:alternateName Åbo Akademi University
    205 schema:name Laboratoire de Sécurité des Procédés Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France
    206 Laboratory of Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, 20500, Åbo, Turku, Finland
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.435013.0 schema:alternateName Institut National des Sciences Appliquées de Rouen
    209 schema:name Laboratoire de Sécurité des Procédés Chimiques - LSPC EA 4704, Normandie Univ, INSA Rouen, UNIROUEN, 76000, Rouen, France
    210 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...