Statistical classification of early and late wood through the growth rings using thermogravimetric analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

Mario Francisco-Fernández, Javier Tarrío-Saavedra, Salvador Naya, Jorge López-Beceiro, Ramón Artiaga

ABSTRACT

The aim of this study is to statistically identify and distinguish wood samples corresponding to different areas of annual rings in trees of temperate regions, using the corresponding thermogravimetric (TG) and their first TG derivative (DTG) curves, and specifically to verify whether late and early wood chestnut samples are different with statistical significance, taking into account their TG and DTG curves. These significant differences are sought by applying statistical procedures based on functional data analysis (FDA), such as the functional ANOVA and the FDA classification methods. Each TG curve is firstly smoothed using the local polynomial regression estimator, and its first derivative is estimated. Then, functional ANOVA based on random projections (RP) is used to identify significant differences between TG or DTG curves of early and late wood samples. In order to know the extent of the differences between early and late wood samples, they are discriminated (and the correct classification proportion obtained) by employing a kernel nonparametric functional data analysis technique, based on the Bayes' rule, as well as functional generalized linear models and functional generalized additive models, allowing to classify materials using more than one type of thermal curves simultaneously. The results are compared with those obtained using some classical multivariate supervised classification methods: linear discriminant analysis, naive Bayes (NBC) and quadratic classification (QDA). The partial least squares (PLS) dimension reduction procedure was previously applied to the TG curves in order to employ these multivariate methods. The application of RP ANOVA shows significant differences between late and early wood regarding mass loss and mass loss rate under combustion. The use of PLS multivariate methods or FDA classification approaches applied to the TG and DTG curves allows to distinguish very accurately between late and early wood. The proposed method could be applied to other species to identify thermooxidative differences, combined with other experimental methods to find their chemical and physical causes. More... »

PAGES

499-506

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-016-5917-5

DOI

http://dx.doi.org/10.1007/s10973-016-5917-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007441093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Facultad de Inform\u00e1tica, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francisco-Fern\u00e1ndez", 
        "givenName": "Mario", 
        "id": "sg:person.01027153607.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas. Facultade de Humanidades, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarr\u00edo-Saavedra", 
        "givenName": "Javier", 
        "id": "sg:person.010527411315.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas. Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naya", 
        "givenName": "Salvador", 
        "id": "sg:person.010043463111.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Ingenier\u00eda Industrial II. Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Beceiro", 
        "givenName": "Jorge", 
        "id": "sg:person.07766551031.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Ingenier\u00eda Industrial II. Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artiaga", 
        "givenName": "Ram\u00f3n", 
        "id": "sg:person.011361512031.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10973-011-2133-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001431490", 
          "https://doi.org/10.1007/s10973-011-2133-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470013192.bsa239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002080385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2011.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002258070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(96)00030-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.11.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008725675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2003.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008800036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010976130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-2361(03)00220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012274015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-2361(03)00220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012274015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2370(03)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2370(03)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2736-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015609405", 
          "https://doi.org/10.1007/978-3-7908-2736-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7908-2736-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015609405", 
          "https://doi.org/10.1007/978-3-7908-2736-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-1157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725438", 
          "https://doi.org/10.1007/s10973-010-1157-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.2561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024890806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060174", 
          "https://doi.org/10.1007/bf02595862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060174", 
          "https://doi.org/10.1007/bf02595862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2370(96)00932-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025131625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17841-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026545920", 
          "https://doi.org/10.1007/978-3-642-17841-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-17841-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026545920", 
          "https://doi.org/10.1007/978-3-642-17841-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028668584", 
          "https://doi.org/10.1007/s10973-014-4260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0584-8539(94)80207-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-010-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029996736", 
          "https://doi.org/10.1007/s11749-010-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-010-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029996736", 
          "https://doi.org/10.1007/s11749-010-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(03)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032526128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(03)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032526128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032830636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4039-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587381", 
          "https://doi.org/10.1007/s10973-014-4039-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043864537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470423837.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-2180(70)80037-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050145679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051809453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051809453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3315952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053413161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001800200126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054512798", 
          "https://doi.org/10.1007/s001800200126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2009.2039479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705924", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "The aim of this study is to statistically identify and distinguish wood samples corresponding to different areas of annual rings in trees of temperate regions, using the corresponding thermogravimetric (TG) and their first TG derivative (DTG) curves, and specifically to verify whether late and early wood chestnut samples are different with statistical significance, taking into account their TG and DTG curves. These significant differences are sought by applying statistical procedures based on functional data analysis (FDA), such as the functional ANOVA and the FDA classification methods. Each TG curve is firstly smoothed using the local polynomial regression estimator, and its first derivative is estimated. Then, functional ANOVA based on random projections (RP) is used to identify significant differences between TG or DTG curves of early and late wood samples. In order to know the extent of the differences between early and late wood samples, they are discriminated (and the correct classification proportion obtained) by employing a kernel nonparametric functional data analysis technique, based on the Bayes' rule, as well as functional generalized linear models and functional generalized additive models, allowing to classify materials using more than one type of thermal curves simultaneously. The results are compared with those obtained using some classical multivariate supervised classification methods: linear discriminant analysis, naive Bayes (NBC) and quadratic classification (QDA). The partial least squares (PLS) dimension reduction procedure was previously applied to the TG curves in order to employ these multivariate methods. The application of RP ANOVA shows significant differences between late and early wood regarding mass loss and mass loss rate under combustion. The use of PLS multivariate methods or FDA classification approaches applied to the TG and DTG curves allows to distinguish very accurately between late and early wood. The proposed method could be applied to other species to identify thermooxidative differences, combined with other experimental methods to find their chemical and physical causes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-016-5917-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "Statistical classification of early and late wood through the growth rings using thermogravimetric analysis", 
    "pagination": "499-506", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "23718db5084aca84189a359100b1a68826e64de9fe5ff55b020eb233f87ad2b5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-016-5917-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007441093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-016-5917-5", 
      "https://app.dimensions.ai/details/publication/pub.1007441093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10973-016-5917-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-016-5917-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-016-5917-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-016-5917-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-016-5917-5'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-016-5917-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5cdc731bcd3d456c918e952888b252df
4 schema:citation sg:pub.10.1007/978-1-4899-4493-1
5 sg:pub.10.1007/978-3-642-17841-2
6 sg:pub.10.1007/978-3-7908-2736-1_36
7 sg:pub.10.1007/bf02595862
8 sg:pub.10.1007/s001800200126
9 sg:pub.10.1007/s10973-010-1157-2
10 sg:pub.10.1007/s10973-011-2133-1
11 sg:pub.10.1007/s10973-014-4039-1
12 sg:pub.10.1007/s10973-014-4260-y
13 sg:pub.10.1007/s11749-010-0185-3
14 https://app.dimensions.ai/details/publication/pub.1109705924
15 https://doi.org/10.1002/0470013192.bsa239
16 https://doi.org/10.1002/9780470423837.ch3
17 https://doi.org/10.1002/cem.2561
18 https://doi.org/10.1016/0016-2361(96)00030-0
19 https://doi.org/10.1016/0165-2370(96)00932-1
20 https://doi.org/10.1016/0584-8539(94)80207-6
21 https://doi.org/10.1016/j.apacoust.2011.05.016
22 https://doi.org/10.1016/j.biortech.2011.11.122
23 https://doi.org/10.1016/j.chemolab.2010.11.006
24 https://doi.org/10.1016/j.chemolab.2011.05.005
25 https://doi.org/10.1016/j.chemolab.2012.07.003
26 https://doi.org/10.1016/j.csda.2003.10.021
27 https://doi.org/10.1016/j.csda.2005.10.012
28 https://doi.org/10.1016/s0010-2180(70)80037-2
29 https://doi.org/10.1016/s0016-2361(03)00220-5
30 https://doi.org/10.1016/s0165-2370(03)00065-2
31 https://doi.org/10.1016/s0167-9473(03)00032-x
32 https://doi.org/10.1021/ie0201157
33 https://doi.org/10.1080/01621459.1995.10476630
34 https://doi.org/10.1109/tsmcc.2009.2039479
35 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
36 https://doi.org/10.1371/journal.pone.0076101
37 https://doi.org/10.18637/jss.v051.i04
38 https://doi.org/10.2307/3315952
39 schema:datePublished 2017-01
40 schema:datePublishedReg 2017-01-01
41 schema:description The aim of this study is to statistically identify and distinguish wood samples corresponding to different areas of annual rings in trees of temperate regions, using the corresponding thermogravimetric (TG) and their first TG derivative (DTG) curves, and specifically to verify whether late and early wood chestnut samples are different with statistical significance, taking into account their TG and DTG curves. These significant differences are sought by applying statistical procedures based on functional data analysis (FDA), such as the functional ANOVA and the FDA classification methods. Each TG curve is firstly smoothed using the local polynomial regression estimator, and its first derivative is estimated. Then, functional ANOVA based on random projections (RP) is used to identify significant differences between TG or DTG curves of early and late wood samples. In order to know the extent of the differences between early and late wood samples, they are discriminated (and the correct classification proportion obtained) by employing a kernel nonparametric functional data analysis technique, based on the Bayes' rule, as well as functional generalized linear models and functional generalized additive models, allowing to classify materials using more than one type of thermal curves simultaneously. The results are compared with those obtained using some classical multivariate supervised classification methods: linear discriminant analysis, naive Bayes (NBC) and quadratic classification (QDA). The partial least squares (PLS) dimension reduction procedure was previously applied to the TG curves in order to employ these multivariate methods. The application of RP ANOVA shows significant differences between late and early wood regarding mass loss and mass loss rate under combustion. The use of PLS multivariate methods or FDA classification approaches applied to the TG and DTG curves allows to distinguish very accurately between late and early wood. The proposed method could be applied to other species to identify thermooxidative differences, combined with other experimental methods to find their chemical and physical causes.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N29c25858254043658b49fed0752d581f
46 N360cb0a63dcd4db6a1a322cf2dea4907
47 sg:journal.1294862
48 schema:name Statistical classification of early and late wood through the growth rings using thermogravimetric analysis
49 schema:pagination 499-506
50 schema:productId N39fdd98a49af4e8b93b2a03c08092d35
51 N58f235e0c1ea4b2c84190c2b0e4e3b2a
52 Ne5510f77414044b1891aa13bb588c1fa
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007441093
54 https://doi.org/10.1007/s10973-016-5917-5
55 schema:sdDatePublished 2019-04-11T12:26
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nf72b8d2fafde49c29b8df6815429f945
58 schema:url https://link.springer.com/10.1007%2Fs10973-016-5917-5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N29c25858254043658b49fed0752d581f schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 N360cb0a63dcd4db6a1a322cf2dea4907 schema:volumeNumber 127
65 rdf:type schema:PublicationVolume
66 N39fdd98a49af4e8b93b2a03c08092d35 schema:name readcube_id
67 schema:value 23718db5084aca84189a359100b1a68826e64de9fe5ff55b020eb233f87ad2b5
68 rdf:type schema:PropertyValue
69 N58f235e0c1ea4b2c84190c2b0e4e3b2a schema:name doi
70 schema:value 10.1007/s10973-016-5917-5
71 rdf:type schema:PropertyValue
72 N5cdc731bcd3d456c918e952888b252df rdf:first sg:person.01027153607.13
73 rdf:rest Nb14bc0e014334573a35f0811d842d89d
74 N679a0707dc3c49609886d533078f6ec6 rdf:first sg:person.07766551031.96
75 rdf:rest Nf57ec0438b4b4eb3ad596723b864dcbb
76 Nb14bc0e014334573a35f0811d842d89d rdf:first sg:person.010527411315.90
77 rdf:rest Ncc11428768be4145ac3dc8b2510abd4f
78 Ncc11428768be4145ac3dc8b2510abd4f rdf:first sg:person.010043463111.42
79 rdf:rest N679a0707dc3c49609886d533078f6ec6
80 Ne5510f77414044b1891aa13bb588c1fa schema:name dimensions_id
81 schema:value pub.1007441093
82 rdf:type schema:PropertyValue
83 Nf57ec0438b4b4eb3ad596723b864dcbb rdf:first sg:person.011361512031.23
84 rdf:rest rdf:nil
85 Nf72b8d2fafde49c29b8df6815429f945 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
91 schema:name Statistics
92 rdf:type schema:DefinedTerm
93 sg:journal.1294862 schema:issn 1388-6150
94 1572-8943
95 schema:name Journal of Thermal Analysis and Calorimetry
96 rdf:type schema:Periodical
97 sg:person.010043463111.42 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
98 schema:familyName Naya
99 schema:givenName Salvador
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42
101 rdf:type schema:Person
102 sg:person.01027153607.13 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
103 schema:familyName Francisco-Fernández
104 schema:givenName Mario
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13
106 rdf:type schema:Person
107 sg:person.010527411315.90 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
108 schema:familyName Tarrío-Saavedra
109 schema:givenName Javier
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90
111 rdf:type schema:Person
112 sg:person.011361512031.23 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
113 schema:familyName Artiaga
114 schema:givenName Ramón
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23
116 rdf:type schema:Person
117 sg:person.07766551031.96 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
118 schema:familyName López-Beceiro
119 schema:givenName Jorge
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96
121 rdf:type schema:Person
122 sg:pub.10.1007/978-1-4899-4493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705924
123 https://doi.org/10.1007/978-1-4899-4493-1
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-642-17841-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026545920
126 https://doi.org/10.1007/978-3-642-17841-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-7908-2736-1_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015609405
129 https://doi.org/10.1007/978-3-7908-2736-1_36
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf02595862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025060174
132 https://doi.org/10.1007/bf02595862
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s001800200126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054512798
135 https://doi.org/10.1007/s001800200126
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10973-010-1157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725438
138 https://doi.org/10.1007/s10973-010-1157-2
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10973-011-2133-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431490
141 https://doi.org/10.1007/s10973-011-2133-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10973-014-4039-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587381
144 https://doi.org/10.1007/s10973-014-4039-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s10973-014-4260-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028668584
147 https://doi.org/10.1007/s10973-014-4260-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11749-010-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029996736
150 https://doi.org/10.1007/s11749-010-0185-3
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1109705924 schema:CreativeWork
153 https://doi.org/10.1002/0470013192.bsa239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002080385
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/9780470423837.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250310
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/cem.2561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024890806
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0016-2361(96)00030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008533944
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0165-2370(96)00932-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025131625
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0584-8539(94)80207-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401152
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.apacoust.2011.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258070
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.biortech.2011.11.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008725675
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.chemolab.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010976130
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.chemolab.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043864537
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.chemolab.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413585
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.csda.2003.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008800036
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.csda.2005.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051809453
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0010-2180(70)80037-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050145679
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0016-2361(03)00220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012274015
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0165-2370(03)00065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277561
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0167-9473(03)00032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032526128
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/ie0201157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055596114
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/01621459.1995.10476630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304913
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tsmcc.2009.2039479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798201
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0076101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032830636
196 rdf:type schema:CreativeWork
197 https://doi.org/10.18637/jss.v051.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672762
198 rdf:type schema:CreativeWork
199 https://doi.org/10.2307/3315952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053413161
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
202 schema:name Departamento de Ingeniería Industrial II. Escola Politécnica Superior, Universidade da Coruña, A Coruña, Spain
203 Departamento de Matemáticas, Facultad de Informática, Universidade da Coruña, A Coruña, Spain
204 Departamento de Matemáticas. Escola Politécnica Superior, Universidade da Coruña, A Coruña, Spain
205 Departamento de Matemáticas. Facultade de Humanidades, Universidade da Coruña, A Coruña, Spain
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...