Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

Nizar Ahammed, Lazarus Godson Asirvatham, Somchai Wongwises

ABSTRACT

In the present study, the effect of volume concentration (0.05, 0.1 and 0.15 %) and temperature (10–90 °C) on viscosity and surface tension of graphene–water nanofluid has been experimentally measured. The sodium dodecyl benzene sulfonate is used as the surfactant for stable suspension of graphene. The results showed that the viscosity of graphene–water nanofluid increases with an increase in the volume concentration of nanoparticles and decreases with an increase in temperature. An average enhancement of 47.12 % in viscosity has been noted for 0.15 % volume concentration of graphene at 50 °C. The enhancement of the viscosity of the nanofluid at higher volume concentration is due to the higher shear rate. In contrast, the surface tension of the graphene–water nanofluid decreases with an increase in both volume concentration and temperature. A decrement of 18.7 % in surface tension has been noted for the same volume concentration and temperature. The surface tension reduction in nanofluid at higher volume concentrations is due to the adsorption of nanoparticles at the liquid–gas interface because of hydrophobic nature of graphene; and at higher temperatures, is due to the weakening of molecular attractions between fluid molecules and nanoparticles. The viscosity and surface tension showed stronger dependency on volume concentration than temperature. Based on the calculated effectiveness of graphene–water nanofluids, it is suggested that the graphene–water nanofluid is preferable as the better coolant for the real-time heat transfer applications. More... »

PAGES

1399-1409

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-015-5034-x

DOI

http://dx.doi.org/10.1007/s10973-015-5034-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028614424


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karunya University", 
          "id": "https://www.grid.ac/institutes/grid.412056.4", 
          "name": [
            "Department of Mechanical Engineering, Karunya University, 641 114, Coimbatore, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahammed", 
        "givenName": "Nizar", 
        "id": "sg:person.012771104353.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771104353.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karunya University", 
          "id": "https://www.grid.ac/institutes/grid.412056.4", 
          "name": [
            "Department of Mechanical Engineering, Karunya University, 641 114, Coimbatore, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asirvatham", 
        "givenName": "Lazarus Godson", 
        "id": "sg:person.015752503777.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752503777.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002864079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fluid.2010.10.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008435527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-013-1153-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011564950", 
          "https://doi.org/10.1007/s00231-013-1153-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2011.12.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011705853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2009.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012673165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2012.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012729699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-0721-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919691", 
          "https://doi.org/10.1007/s10973-010-0721-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-0721-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919691", 
          "https://doi.org/10.1007/s10973-010-0721-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-4328-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014262701", 
          "https://doi.org/10.1007/s10973-014-4328-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2011.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015513739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015566638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-011-1091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016387791", 
          "https://doi.org/10.1007/s00348-011-1091-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017582658", 
          "https://doi.org/10.1186/1556-276x-9-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci110201003s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018441929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019457316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785013090125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019649240", 
          "https://doi.org/10.1134/s1063785013090125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-011-0806-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019890088", 
          "https://doi.org/10.1007/s00231-011-0806-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2013.03.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020018099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023912670", 
          "https://doi.org/10.1186/1556-276x-6-377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025111334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15567265.2010.500319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026831591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026892088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033218090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035482747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041009496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-012-5150-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041297375", 
          "https://doi.org/10.1007/s11434-012-5150-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acme.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043545179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044013755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047375459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047902602", 
          "https://doi.org/10.1186/1556-276x-6-248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049037591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01932691.2013.764483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053663458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1700493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2356113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057851681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4793581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4002287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062142637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4006027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062146359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4024616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062149934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3366409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098563825"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "In the present study, the effect of volume concentration (0.05, 0.1 and 0.15 %) and temperature (10\u201390 \u00b0C) on viscosity and surface tension of graphene\u2013water nanofluid has been experimentally measured. The sodium dodecyl benzene sulfonate is used as the surfactant for stable suspension of graphene. The results showed that the viscosity of graphene\u2013water nanofluid increases with an increase in the volume concentration of nanoparticles and decreases with an increase in temperature. An average enhancement of 47.12 % in viscosity has been noted for 0.15 % volume concentration of graphene at 50 \u00b0C. The enhancement of the viscosity of the nanofluid at higher volume concentration is due to the higher shear rate. In contrast, the surface tension of the graphene\u2013water nanofluid decreases with an increase in both volume concentration and temperature. A decrement of 18.7 % in surface tension has been noted for the same volume concentration and temperature. The surface tension reduction in nanofluid at higher volume concentrations is due to the adsorption of nanoparticles at the liquid\u2013gas interface because of hydrophobic nature of graphene; and at higher temperatures, is due to the weakening of molecular attractions between fluid molecules and nanoparticles. The viscosity and surface tension showed stronger dependency on volume concentration than temperature. Based on the calculated effectiveness of graphene\u2013water nanofluids, it is suggested that the graphene\u2013water nanofluid is preferable as the better coolant for the real-time heat transfer applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-015-5034-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "name": "Effect of volume concentration and temperature on viscosity and surface tension of graphene\u2013water nanofluid for heat transfer applications", 
    "pagination": "1399-1409", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "884f586336483c63e6f269ca88c999c8c3302ba43d59de052f9747acb44be814"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-015-5034-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028614424"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-015-5034-x", 
      "https://app.dimensions.ai/details/publication/pub.1028614424"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-015-5034-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-015-5034-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-015-5034-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-015-5034-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-015-5034-x'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-015-5034-x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc7459b70694e443484743730f76500a4
4 schema:citation sg:pub.10.1007/s00231-011-0806-8
5 sg:pub.10.1007/s00231-013-1153-8
6 sg:pub.10.1007/s00348-011-1091-5
7 sg:pub.10.1007/s10973-010-0721-0
8 sg:pub.10.1007/s10973-014-4328-8
9 sg:pub.10.1007/s11434-012-5150-y
10 sg:pub.10.1134/s1063785013090125
11 sg:pub.10.1186/1556-276x-6-248
12 sg:pub.10.1186/1556-276x-6-377
13 sg:pub.10.1186/1556-276x-9-15
14 https://doi.org/10.1016/j.acme.2013.08.002
15 https://doi.org/10.1016/j.apenergy.2011.12.101
16 https://doi.org/10.1016/j.applthermaleng.2013.03.047
17 https://doi.org/10.1016/j.expthermflusci.2012.01.033
18 https://doi.org/10.1016/j.expthermflusci.2013.02.009
19 https://doi.org/10.1016/j.fluid.2010.10.015
20 https://doi.org/10.1016/j.icheatmasstransfer.2013.10.010
21 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.001
22 https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011
23 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021
24 https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052
25 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003
26 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.030
27 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
28 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.037
29 https://doi.org/10.1016/j.ijrefrig.2012.03.012
30 https://doi.org/10.1016/j.ijthermalsci.2011.03.027
31 https://doi.org/10.1016/j.partic.2011.03.014
32 https://doi.org/10.1016/j.rser.2009.10.004
33 https://doi.org/10.1016/j.rser.2010.11.035
34 https://doi.org/10.1063/1.1700493
35 https://doi.org/10.1063/1.2356113
36 https://doi.org/10.1063/1.3366409
37 https://doi.org/10.1063/1.4793581
38 https://doi.org/10.1080/01932691.2013.764483
39 https://doi.org/10.1080/15567265.2010.500319
40 https://doi.org/10.1115/1.2150834
41 https://doi.org/10.1115/1.4002287
42 https://doi.org/10.1115/1.4006027
43 https://doi.org/10.1115/1.4024616
44 https://doi.org/10.2298/tsci110201003s
45 https://doi.org/10.2514/2.6486
46 schema:datePublished 2016-02
47 schema:datePublishedReg 2016-02-01
48 schema:description In the present study, the effect of volume concentration (0.05, 0.1 and 0.15 %) and temperature (10–90 °C) on viscosity and surface tension of graphene–water nanofluid has been experimentally measured. The sodium dodecyl benzene sulfonate is used as the surfactant for stable suspension of graphene. The results showed that the viscosity of graphene–water nanofluid increases with an increase in the volume concentration of nanoparticles and decreases with an increase in temperature. An average enhancement of 47.12 % in viscosity has been noted for 0.15 % volume concentration of graphene at 50 °C. The enhancement of the viscosity of the nanofluid at higher volume concentration is due to the higher shear rate. In contrast, the surface tension of the graphene–water nanofluid decreases with an increase in both volume concentration and temperature. A decrement of 18.7 % in surface tension has been noted for the same volume concentration and temperature. The surface tension reduction in nanofluid at higher volume concentrations is due to the adsorption of nanoparticles at the liquid–gas interface because of hydrophobic nature of graphene; and at higher temperatures, is due to the weakening of molecular attractions between fluid molecules and nanoparticles. The viscosity and surface tension showed stronger dependency on volume concentration than temperature. Based on the calculated effectiveness of graphene–water nanofluids, it is suggested that the graphene–water nanofluid is preferable as the better coolant for the real-time heat transfer applications.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N869f201678ed40888cfab5bc9c78f461
53 Nad54537766b24f39bbc918b0e49fe000
54 sg:journal.1294862
55 schema:name Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications
56 schema:pagination 1399-1409
57 schema:productId Na935944cbfca4e928dfa0a93314790a6
58 Nd8f361295dda4e23ba62af4b83948b86
59 Nfff60128e2094ee6b6210d90e7699f08
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028614424
61 https://doi.org/10.1007/s10973-015-5034-x
62 schema:sdDatePublished 2019-04-10T20:47
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ne00cf535ea764b0f996c46f8e17bfc52
65 schema:url http://link.springer.com/10.1007%2Fs10973-015-5034-x
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N083cfe6ac5f945579f2af900328914b5 rdf:first sg:person.012267021412.00
70 rdf:rest rdf:nil
71 N869f201678ed40888cfab5bc9c78f461 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 N8b3d05ac3fe64cac98cdeef02cb218d3 rdf:first sg:person.015752503777.54
74 rdf:rest N083cfe6ac5f945579f2af900328914b5
75 Na935944cbfca4e928dfa0a93314790a6 schema:name doi
76 schema:value 10.1007/s10973-015-5034-x
77 rdf:type schema:PropertyValue
78 Nad54537766b24f39bbc918b0e49fe000 schema:volumeNumber 123
79 rdf:type schema:PublicationVolume
80 Nc7459b70694e443484743730f76500a4 rdf:first sg:person.012771104353.31
81 rdf:rest N8b3d05ac3fe64cac98cdeef02cb218d3
82 Nd8f361295dda4e23ba62af4b83948b86 schema:name dimensions_id
83 schema:value pub.1028614424
84 rdf:type schema:PropertyValue
85 Ne00cf535ea764b0f996c46f8e17bfc52 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nfff60128e2094ee6b6210d90e7699f08 schema:name readcube_id
88 schema:value 884f586336483c63e6f269ca88c999c8c3302ba43d59de052f9747acb44be814
89 rdf:type schema:PropertyValue
90 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
91 schema:name Chemical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Chemistry (incl. Structural)
95 rdf:type schema:DefinedTerm
96 sg:journal.1294862 schema:issn 1388-6150
97 1572-8943
98 schema:name Journal of Thermal Analysis and Calorimetry
99 rdf:type schema:Periodical
100 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
101 schema:familyName Wongwises
102 schema:givenName Somchai
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
104 rdf:type schema:Person
105 sg:person.012771104353.31 schema:affiliation https://www.grid.ac/institutes/grid.412056.4
106 schema:familyName Ahammed
107 schema:givenName Nizar
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771104353.31
109 rdf:type schema:Person
110 sg:person.015752503777.54 schema:affiliation https://www.grid.ac/institutes/grid.412056.4
111 schema:familyName Asirvatham
112 schema:givenName Lazarus Godson
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752503777.54
114 rdf:type schema:Person
115 sg:pub.10.1007/s00231-011-0806-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019890088
116 https://doi.org/10.1007/s00231-011-0806-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00231-013-1153-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011564950
119 https://doi.org/10.1007/s00231-013-1153-8
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00348-011-1091-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016387791
122 https://doi.org/10.1007/s00348-011-1091-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10973-010-0721-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919691
125 https://doi.org/10.1007/s10973-010-0721-0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10973-014-4328-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262701
128 https://doi.org/10.1007/s10973-014-4328-8
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11434-012-5150-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041297375
131 https://doi.org/10.1007/s11434-012-5150-y
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s1063785013090125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019649240
134 https://doi.org/10.1134/s1063785013090125
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1556-276x-6-248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047902602
137 https://doi.org/10.1186/1556-276x-6-248
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1556-276x-6-377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023912670
140 https://doi.org/10.1186/1556-276x-6-377
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1556-276x-9-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017582658
143 https://doi.org/10.1186/1556-276x-9-15
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.acme.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043545179
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.apenergy.2011.12.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011705853
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.applthermaleng.2013.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020018099
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.expthermflusci.2012.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534373
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.expthermflusci.2013.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044013755
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.fluid.2010.10.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008435527
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.icheatmasstransfer.2013.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002864079
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.icheatmasstransfer.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026892088
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047375459
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035482747
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019457316
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049037591
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025111334
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319087
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033218090
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijrefrig.2012.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012729699
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijthermalsci.2011.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041009496
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.partic.2011.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015513739
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.rser.2009.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012673165
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.rser.2010.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566638
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.1700493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770936
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.2356113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057851681
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3366409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098563825
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.4793581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070201
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01932691.2013.764483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053663458
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/15567265.2010.500319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026831591
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1115/1.4002287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062142637
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1115/1.4006027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062146359
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1115/1.4024616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062149934
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2298/tsci110201003s schema:sameAs https://app.dimensions.ai/details/publication/pub.1018441929
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2514/2.6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494919
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.412056.4 schema:alternateName Karunya University
210 schema:name Department of Mechanical Engineering, Karunya University, 641 114, Coimbatore, Tamil Nadu, India
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
213 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...