An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

Mohammad Hemmat Esfe, Seyfolah Saedodin, Somchai Wongwises, Davood Toghraie

ABSTRACT

The addition of nanoparticles to a base fluid is one of the significant issues to enhance heat transfer. In this study, different nanofluids were developed by mixing a water base fluid with magnetic nanoparticles. Thermophysical properties such as thermal conductivity and viscosity of the obtained nanofluid were investigated. The effect of different nominal diameters of nanoparticles and concentrations of nanoparticles on the thermal conductivity and viscosity of nanofluids have been examined. Three different diameters of magnetic nanoparticles (about 37 nm, 71 nm, and 98 nm) have been tested in this experimental investigation. Experimental results indicate that thermal conductivity increases as volume fraction increases, and thermal conductivity of the nanofluid increases with a decrease of nanoparticle’s size. Moreover, the nanofluid dynamics viscosity ratio increases with an increase in particle concentration and nanoparticle’s diameter. This paper identifies several important issues that should be considered in future work. More... »

PAGES

1817-1824

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-014-4328-8

DOI

http://dx.doi.org/10.1007/s10973-014-4328-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014262701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, P. O. Box 3513119111, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemmat Esfe", 
        "givenName": "Mohammad", 
        "id": "sg:person.015143716677.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, P. O. Box 3513119111, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saedodin", 
        "givenName": "Seyfolah", 
        "id": "sg:person.014252566317.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Isfahan", 
          "id": "https://www.grid.ac/institutes/grid.411757.1", 
          "name": [
            "Faculty of Mechanical Engineering, Islamic Azad University, Khomeinishahr Branch, Isfahan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toghraie", 
        "givenName": "Davood", 
        "id": "sg:person.010752567141.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752567141.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000819778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000854933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004677334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005177705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2009.11.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007801778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010614521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2010.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011590885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2008.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012256578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.08.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013290003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013310854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9658-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013973504", 
          "https://doi.org/10.1007/s11051-009-9658-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9658-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013973504", 
          "https://doi.org/10.1007/s11051-009-9658-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016788927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-014-3771-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017823300", 
          "https://doi.org/10.1007/s10973-014-3771-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018281063", 
          "https://doi.org/10.1186/1556-276x-6-221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19063240204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018470511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2010.05.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022604522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3155999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024443124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-012-2534-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031715389", 
          "https://doi.org/10.1007/s10973-012-2534-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024438603801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032513358", 
          "https://doi.org/10.1023/a:1024438603801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(87)90034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032592910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(87)90034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032592910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2010.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034062324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2012.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034209655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035720844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1956.0205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036197826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037396779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038169926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039302729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048590416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052507027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2005.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052876273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/i160003a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055523914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1141498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057669177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2221905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3348387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057939716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3372733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057943262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1571080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2825978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2928050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062097633"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "The addition of nanoparticles to a base fluid is one of the significant issues to enhance heat transfer. In this study, different nanofluids were developed by mixing a water base fluid with magnetic nanoparticles. Thermophysical properties such as thermal conductivity and viscosity of the obtained nanofluid were investigated. The effect of different nominal diameters of nanoparticles and concentrations of nanoparticles on the thermal conductivity and viscosity of nanofluids have been examined. Three different diameters of magnetic nanoparticles (about 37 nm, 71 nm, and 98 nm) have been tested in this experimental investigation. Experimental results indicate that thermal conductivity increases as volume fraction increases, and thermal conductivity of the nanofluid increases with a decrease of nanoparticle\u2019s size. Moreover, the nanofluid dynamics viscosity ratio increases with an increase in particle concentration and nanoparticle\u2019s diameter. This paper identifies several important issues that should be considered in future work.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-014-4328-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "119"
      }
    ], 
    "name": "An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids", 
    "pagination": "1817-1824", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43f25de869493e11b428e02576be7d75ca31a39616e401c3fbd4eef8d3db2cff"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-014-4328-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014262701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-014-4328-8", 
      "https://app.dimensions.ai/details/publication/pub.1014262701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-014-4328-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4328-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4328-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4328-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4328-8'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-014-4328-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb9b219d079a040918ab685ae9f7555d1
4 schema:citation sg:pub.10.1007/s10973-012-2534-9
5 sg:pub.10.1007/s10973-014-3771-x
6 sg:pub.10.1007/s11051-009-9658-2
7 sg:pub.10.1023/a:1024438603801
8 sg:pub.10.1186/1556-276x-6-221
9 https://doi.org/10.1002/andp.19063240204
10 https://doi.org/10.1016/0304-8853(87)90034-5
11 https://doi.org/10.1016/j.apenergy.2008.12.020
12 https://doi.org/10.1016/j.applthermaleng.2010.05.036
13 https://doi.org/10.1016/j.cap.2005.07.021
14 https://doi.org/10.1016/j.colsurfa.2009.11.044
15 https://doi.org/10.1016/j.expthermflusci.2011.01.006
16 https://doi.org/10.1016/j.expthermflusci.2012.03.016
17 https://doi.org/10.1016/j.expthermflusci.2013.08.023
18 https://doi.org/10.1016/j.expthermflusci.2013.12.013
19 https://doi.org/10.1016/j.expthermflusci.2014.02.011
20 https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005
21 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
22 https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026
23 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007
24 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
25 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
26 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069
27 https://doi.org/10.1016/j.ijthermalsci.2008.03.009
28 https://doi.org/10.1016/j.jmmm.2010.08.016
29 https://doi.org/10.1016/j.msea.2006.08.083
30 https://doi.org/10.1016/j.partic.2010.05.014
31 https://doi.org/10.1016/j.rser.2010.03.017
32 https://doi.org/10.1016/j.rser.2012.03.013
33 https://doi.org/10.1016/j.tca.2012.01.010
34 https://doi.org/10.1021/i160003a005
35 https://doi.org/10.1063/1.1141498
36 https://doi.org/10.1063/1.2221905
37 https://doi.org/10.1063/1.3155999
38 https://doi.org/10.1063/1.3348387
39 https://doi.org/10.1063/1.3372733
40 https://doi.org/10.1098/rspa.1956.0205
41 https://doi.org/10.1115/1.1571080
42 https://doi.org/10.1115/1.2825978
43 https://doi.org/10.1115/1.2928050
44 https://doi.org/10.2514/2.6486
45 schema:datePublished 2015-03
46 schema:datePublishedReg 2015-03-01
47 schema:description The addition of nanoparticles to a base fluid is one of the significant issues to enhance heat transfer. In this study, different nanofluids were developed by mixing a water base fluid with magnetic nanoparticles. Thermophysical properties such as thermal conductivity and viscosity of the obtained nanofluid were investigated. The effect of different nominal diameters of nanoparticles and concentrations of nanoparticles on the thermal conductivity and viscosity of nanofluids have been examined. Three different diameters of magnetic nanoparticles (about 37 nm, 71 nm, and 98 nm) have been tested in this experimental investigation. Experimental results indicate that thermal conductivity increases as volume fraction increases, and thermal conductivity of the nanofluid increases with a decrease of nanoparticle’s size. Moreover, the nanofluid dynamics viscosity ratio increases with an increase in particle concentration and nanoparticle’s diameter. This paper identifies several important issues that should be considered in future work.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf Nb1fd06197feb4910b75c7358d2c4c13d
52 Nfc5344518de246e88f5493d8105bc56f
53 sg:journal.1294862
54 schema:name An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids
55 schema:pagination 1817-1824
56 schema:productId Nc0f880462a6640ff9af30418d51a18af
57 Ne44c99719c58456ab2fddeb58d252105
58 Nf49e69bcddd54041858060093ed34f1b
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262701
60 https://doi.org/10.1007/s10973-014-4328-8
61 schema:sdDatePublished 2019-04-10T19:57
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N9c7bce2490704a60b258a480d31d0a6c
64 schema:url http://link.springer.com/10.1007%2Fs10973-014-4328-8
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0709fb8e09634c51be580e701b32fbac rdf:first sg:person.010752567141.94
69 rdf:rest rdf:nil
70 N360b79d4fe394d419da64139755dcf98 rdf:first sg:person.014252566317.89
71 rdf:rest Nbad36fe88b27435e817df4a89b88db80
72 N9c7bce2490704a60b258a480d31d0a6c schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb1fd06197feb4910b75c7358d2c4c13d schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 Nb9b219d079a040918ab685ae9f7555d1 rdf:first sg:person.015143716677.04
77 rdf:rest N360b79d4fe394d419da64139755dcf98
78 Nbad36fe88b27435e817df4a89b88db80 rdf:first sg:person.012267021412.00
79 rdf:rest N0709fb8e09634c51be580e701b32fbac
80 Nc0f880462a6640ff9af30418d51a18af schema:name dimensions_id
81 schema:value pub.1014262701
82 rdf:type schema:PropertyValue
83 Ne44c99719c58456ab2fddeb58d252105 schema:name readcube_id
84 schema:value 43f25de869493e11b428e02576be7d75ca31a39616e401c3fbd4eef8d3db2cff
85 rdf:type schema:PropertyValue
86 Nf49e69bcddd54041858060093ed34f1b schema:name doi
87 schema:value 10.1007/s10973-014-4328-8
88 rdf:type schema:PropertyValue
89 Nfc5344518de246e88f5493d8105bc56f schema:volumeNumber 119
90 rdf:type schema:PublicationVolume
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Chemistry (incl. Structural)
96 rdf:type schema:DefinedTerm
97 sg:journal.1294862 schema:issn 1388-6150
98 1572-8943
99 schema:name Journal of Thermal Analysis and Calorimetry
100 rdf:type schema:Periodical
101 sg:person.010752567141.94 schema:affiliation https://www.grid.ac/institutes/grid.411757.1
102 schema:familyName Toghraie
103 schema:givenName Davood
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010752567141.94
105 rdf:type schema:Person
106 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
107 schema:familyName Wongwises
108 schema:givenName Somchai
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
110 rdf:type schema:Person
111 sg:person.014252566317.89 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
112 schema:familyName Saedodin
113 schema:givenName Seyfolah
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89
115 rdf:type schema:Person
116 sg:person.015143716677.04 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
117 schema:familyName Hemmat Esfe
118 schema:givenName Mohammad
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04
120 rdf:type schema:Person
121 sg:pub.10.1007/s10973-012-2534-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031715389
122 https://doi.org/10.1007/s10973-012-2534-9
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10973-014-3771-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017823300
125 https://doi.org/10.1007/s10973-014-3771-x
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11051-009-9658-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013973504
128 https://doi.org/10.1007/s11051-009-9658-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1024438603801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032513358
131 https://doi.org/10.1023/a:1024438603801
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1556-276x-6-221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018281063
134 https://doi.org/10.1186/1556-276x-6-221
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/andp.19063240204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018470511
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0304-8853(87)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032592910
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.apenergy.2008.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256578
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.applthermaleng.2010.05.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022604522
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.cap.2005.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052876273
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.colsurfa.2009.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007801778
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.expthermflusci.2011.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000819778
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.expthermflusci.2012.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052507027
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.expthermflusci.2013.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000854933
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.expthermflusci.2013.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038169926
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.expthermflusci.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004677334
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005177705
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048590416
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037396779
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035720844
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152128
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016788927
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039302729
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ijthermalsci.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602480
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jmmm.2010.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011590885
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.msea.2006.08.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013290003
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.partic.2010.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034062324
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.rser.2010.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010614521
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.rser.2012.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310854
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.tca.2012.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209655
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/i160003a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055523914
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.1141498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057669177
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.2221905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848880
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.3155999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024443124
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.3348387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057939716
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.3372733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057943262
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rspa.1956.0205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036197826
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1115/1.1571080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072311
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1115/1.2825978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085787
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1115/1.2928050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062097633
205 rdf:type schema:CreativeWork
206 https://doi.org/10.2514/2.6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494919
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.411757.1 schema:alternateName Islamic Azad University, Isfahan
209 schema:name Faculty of Mechanical Engineering, Islamic Azad University, Khomeinishahr Branch, Isfahan, Iran
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
212 schema:name Department of Mechanical Engineering, Faculty of Engineering, Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.412475.1 schema:alternateName Semnan University
215 schema:name Faculty of Mechanical Engineering, Semnan University, P. O. Box 3513119111, Semnan, Iran
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...