Classification of wood using differential thermogravimetric analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Mario Francisco-Fernández, Javier Tarrío-Saavedra, Salvador Naya, Jorge López-Beceiro, Ramón Artiaga

ABSTRACT

The aim of this study is to propose an alternative methodology to classify wood species using the first (DTG), second (2DTG), and third (3DTG) derivatives of the thermogravimetric curves (TG). Accordingly, the main contribution of this new procedure consists on classifying materials (wood) taking into account the mass loss rate and acceleration with respect to temperature. In our research, each TG curve is firstly smoothed using the local polynomial regression estimator, and the first, second, and third derivatives are estimated. The application of the local polynomial regression estimator provides a reliable way to obtain the TG derivatives, overcoming the noise problem in the TG derivative estimation. Then, using these estimated curves, the different wood classes are discriminated employing a nonparametric functional data analysis (NPFDA) technique, based on the Bayes rule and the Nadaraya-Watson regression estimator, and also novel functional generalized additive models (GAM). The latter allows to classify materials using simultaneously more than one type of thermal curves. The results are compared with those obtained using classical and machine learning multivariate supervised classification methods, such as Linear discriminant analysis, Quadratic classification, Naïve Bayes, Logistic regression, k Nearest neighbors, Neural networks, and Support vector machines. A regression model consisting of the mixture of the first derivatives of four generalized logistic components, one per principal wood constituent (water, hemicellulose, cellulose, and lignin), is applied to fit the DTG curves. The resulting 16 parameters from this fit characterize each curve and are used as datasets to apply the multivariate supervised classification methods. The use of the TG derivatives jointly with the TG curves has proved to be an optimal discriminating feature, when the new functional GAM techniques are employed. More... »

PAGES

541-551

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-014-4260-y

DOI

http://dx.doi.org/10.1007/s10973-014-4260-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028668584


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Facultad de Inform\u00e1tica, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francisco-Fern\u00e1ndez", 
        "givenName": "Mario", 
        "id": "sg:person.01027153607.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarr\u00edo-Saavedra", 
        "givenName": "Javier", 
        "id": "sg:person.010527411315.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Matem\u00e1ticas, Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naya", 
        "givenName": "Salvador", 
        "id": "sg:person.010043463111.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Ingenier\u00eda Industrial II, Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Beceiro", 
        "givenName": "Jorge", 
        "id": "sg:person.07766551031.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Departamento de Ingenier\u00eda Industrial II, Escuela Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artiaga", 
        "givenName": "Ram\u00f3n", 
        "id": "sg:person.011361512031.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10973-011-2133-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001431490", 
          "https://doi.org/10.1007/s10973-011-2133-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0470013192.bsa239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002080385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apacoust.2011.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002258070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(96)00030-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008533944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2003.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008800036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1386-1425(99)00088-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009048065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-009-0671-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009265194", 
          "https://doi.org/10.1007/s10973-009-0671-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-009-0671-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009265194", 
          "https://doi.org/10.1007/s10973-009-0671-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010976130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s11696-009-0109-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011710975", 
          "https://doi.org/10.2478/s11696-009-0109-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef0502397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef0502397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012909256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2370(03)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2370(03)00065-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-1157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725438", 
          "https://doi.org/10.1007/s10973-010-1157-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-1237-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018174036", 
          "https://doi.org/10.1007/s10973-010-1237-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.2561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024890806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060174", 
          "https://doi.org/10.1007/bf02595862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060174", 
          "https://doi.org/10.1007/bf02595862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2370(96)00932-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025131625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0584-8539(94)80207-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029401152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(03)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032526128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(03)00032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032526128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032830636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-012-0308-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035966942", 
          "https://doi.org/10.1007/s11749-012-0308-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02137.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biotechadv.2009.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040391933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3180.2008.00598.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040595181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3180.2008.00598.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040595181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2006.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042897475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043864537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470423837.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2006.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044392350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-2180(70)80037-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050145679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-1229-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052860975", 
          "https://doi.org/10.1007/s10973-010-1229-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3315952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053413161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2009.2039479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069474052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511812651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705924", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-04", 
    "datePublishedReg": "2015-04-01", 
    "description": "The aim of this study is to propose an alternative methodology to classify wood species using the first (DTG), second (2DTG), and third (3DTG) derivatives of the thermogravimetric curves (TG). Accordingly, the main contribution of this new procedure consists on classifying materials (wood) taking into account the mass loss rate and acceleration with respect to temperature. In our research, each TG curve is firstly smoothed using the local polynomial regression estimator, and the first, second, and third derivatives are estimated. The application of the local polynomial regression estimator provides a reliable way to obtain the TG derivatives, overcoming the noise problem in the TG derivative estimation. Then, using these estimated curves, the different wood classes are discriminated employing a nonparametric functional data analysis (NPFDA) technique, based on the Bayes rule and the Nadaraya-Watson regression estimator, and also novel functional generalized additive models (GAM). The latter allows to classify materials using simultaneously more than one type of thermal curves. The results are compared with those obtained using classical and machine learning multivariate supervised classification methods, such as Linear discriminant analysis, Quadratic classification, Na\u00efve Bayes, Logistic regression, k Nearest neighbors, Neural networks, and Support vector machines. A regression model consisting of the mixture of the first derivatives of four generalized logistic components, one per principal wood constituent (water, hemicellulose, cellulose, and lignin), is applied to fit the DTG curves. The resulting 16 parameters from this fit characterize each curve and are used as datasets to apply the multivariate supervised classification methods. The use of the TG derivatives jointly with the TG curves has proved to be an optimal discriminating feature, when the new functional GAM techniques are employed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-014-4260-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "name": "Classification of wood using differential thermogravimetric analysis", 
    "pagination": "541-551", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "889165f231d6906c15cda1d88712d72dbc5f5b2a17c088ddf706c15de402adc0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-014-4260-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028668584"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-014-4260-y", 
      "https://app.dimensions.ai/details/publication/pub.1028668584"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000588.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-014-4260-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4260-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4260-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4260-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4260-y'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-014-4260-y schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na7690befaef04c5eb9b437a0341ed101
4 schema:citation sg:pub.10.1007/978-1-4899-4493-1
5 sg:pub.10.1007/bf02595862
6 sg:pub.10.1007/s10973-009-0671-6
7 sg:pub.10.1007/s10973-010-1157-2
8 sg:pub.10.1007/s10973-010-1229-3
9 sg:pub.10.1007/s10973-010-1237-3
10 sg:pub.10.1007/s10973-011-2133-1
11 sg:pub.10.1007/s11749-012-0308-0
12 sg:pub.10.2478/s11696-009-0109-4
13 https://app.dimensions.ai/details/publication/pub.1109705924
14 https://doi.org/10.1002/0470013192.bsa239
15 https://doi.org/10.1002/9780470423837.ch3
16 https://doi.org/10.1002/cem.2561
17 https://doi.org/10.1016/0016-2361(96)00030-0
18 https://doi.org/10.1016/0165-2370(96)00932-1
19 https://doi.org/10.1016/0584-8539(94)80207-6
20 https://doi.org/10.1016/j.apacoust.2011.05.016
21 https://doi.org/10.1016/j.biotechadv.2009.04.010
22 https://doi.org/10.1016/j.chemolab.2010.11.006
23 https://doi.org/10.1016/j.chemolab.2011.05.005
24 https://doi.org/10.1016/j.chemolab.2012.07.003
25 https://doi.org/10.1016/j.csda.2003.10.021
26 https://doi.org/10.1016/j.fuel.2006.12.013
27 https://doi.org/10.1016/j.pecs.2006.12.001
28 https://doi.org/10.1016/s0010-2180(70)80037-2
29 https://doi.org/10.1016/s0165-2370(03)00065-2
30 https://doi.org/10.1016/s0167-9473(03)00032-x
31 https://doi.org/10.1016/s1386-1425(99)00088-8
32 https://doi.org/10.1017/cbo9780511812651
33 https://doi.org/10.1021/ef0502397
34 https://doi.org/10.1021/ie0201157
35 https://doi.org/10.1080/01621459.1995.10476630
36 https://doi.org/10.1109/tsmcc.2009.2039479
37 https://doi.org/10.1111/j.1365-3180.2008.00598.x
38 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
39 https://doi.org/10.1371/journal.pone.0076101
40 https://doi.org/10.2307/1403797
41 https://doi.org/10.2307/3315952
42 schema:datePublished 2015-04
43 schema:datePublishedReg 2015-04-01
44 schema:description The aim of this study is to propose an alternative methodology to classify wood species using the first (DTG), second (2DTG), and third (3DTG) derivatives of the thermogravimetric curves (TG). Accordingly, the main contribution of this new procedure consists on classifying materials (wood) taking into account the mass loss rate and acceleration with respect to temperature. In our research, each TG curve is firstly smoothed using the local polynomial regression estimator, and the first, second, and third derivatives are estimated. The application of the local polynomial regression estimator provides a reliable way to obtain the TG derivatives, overcoming the noise problem in the TG derivative estimation. Then, using these estimated curves, the different wood classes are discriminated employing a nonparametric functional data analysis (NPFDA) technique, based on the Bayes rule and the Nadaraya-Watson regression estimator, and also novel functional generalized additive models (GAM). The latter allows to classify materials using simultaneously more than one type of thermal curves. The results are compared with those obtained using classical and machine learning multivariate supervised classification methods, such as Linear discriminant analysis, Quadratic classification, Naïve Bayes, Logistic regression, k Nearest neighbors, Neural networks, and Support vector machines. A regression model consisting of the mixture of the first derivatives of four generalized logistic components, one per principal wood constituent (water, hemicellulose, cellulose, and lignin), is applied to fit the DTG curves. The resulting 16 parameters from this fit characterize each curve and are used as datasets to apply the multivariate supervised classification methods. The use of the TG derivatives jointly with the TG curves has proved to be an optimal discriminating feature, when the new functional GAM techniques are employed.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N21be8212b32046aebc7f6df75335e639
49 Nb75e753a475743cda5ddf767506b06b3
50 sg:journal.1294862
51 schema:name Classification of wood using differential thermogravimetric analysis
52 schema:pagination 541-551
53 schema:productId N38a2f672c75643d4a46073586af7b56c
54 Nb1174cefd1cd49a3bff4789da80d3561
55 Nbafd739b2f42405c88b2c6894594be0e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028668584
57 https://doi.org/10.1007/s10973-014-4260-y
58 schema:sdDatePublished 2019-04-10T14:21
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7b2cf123d4f842f99d497a4d8d217d84
61 schema:url http://link.springer.com/10.1007%2Fs10973-014-4260-y
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N21be8212b32046aebc7f6df75335e639 schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N2bb10ae30e9f42bcbc20a8f519988033 rdf:first sg:person.011361512031.23
68 rdf:rest rdf:nil
69 N38a2f672c75643d4a46073586af7b56c schema:name dimensions_id
70 schema:value pub.1028668584
71 rdf:type schema:PropertyValue
72 N4f0bc8240f864f738d20edee832fcaaa rdf:first sg:person.010527411315.90
73 rdf:rest Nd219c5e141f143d2a8b284f460388782
74 N67629447c0b84cf4840a80aefb3d7832 rdf:first sg:person.07766551031.96
75 rdf:rest N2bb10ae30e9f42bcbc20a8f519988033
76 N7b2cf123d4f842f99d497a4d8d217d84 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Na7690befaef04c5eb9b437a0341ed101 rdf:first sg:person.01027153607.13
79 rdf:rest N4f0bc8240f864f738d20edee832fcaaa
80 Nb1174cefd1cd49a3bff4789da80d3561 schema:name readcube_id
81 schema:value 889165f231d6906c15cda1d88712d72dbc5f5b2a17c088ddf706c15de402adc0
82 rdf:type schema:PropertyValue
83 Nb75e753a475743cda5ddf767506b06b3 schema:volumeNumber 120
84 rdf:type schema:PublicationVolume
85 Nbafd739b2f42405c88b2c6894594be0e schema:name doi
86 schema:value 10.1007/s10973-014-4260-y
87 rdf:type schema:PropertyValue
88 Nd219c5e141f143d2a8b284f460388782 rdf:first sg:person.010043463111.42
89 rdf:rest N67629447c0b84cf4840a80aefb3d7832
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:journal.1294862 schema:issn 1388-6150
97 1572-8943
98 schema:name Journal of Thermal Analysis and Calorimetry
99 rdf:type schema:Periodical
100 sg:person.010043463111.42 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
101 schema:familyName Naya
102 schema:givenName Salvador
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42
104 rdf:type schema:Person
105 sg:person.01027153607.13 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
106 schema:familyName Francisco-Fernández
107 schema:givenName Mario
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13
109 rdf:type schema:Person
110 sg:person.010527411315.90 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
111 schema:familyName Tarrío-Saavedra
112 schema:givenName Javier
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90
114 rdf:type schema:Person
115 sg:person.011361512031.23 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
116 schema:familyName Artiaga
117 schema:givenName Ramón
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23
119 rdf:type schema:Person
120 sg:person.07766551031.96 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
121 schema:familyName López-Beceiro
122 schema:givenName Jorge
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96
124 rdf:type schema:Person
125 sg:pub.10.1007/978-1-4899-4493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705924
126 https://doi.org/10.1007/978-1-4899-4493-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02595862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025060174
129 https://doi.org/10.1007/bf02595862
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10973-009-0671-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009265194
132 https://doi.org/10.1007/s10973-009-0671-6
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10973-010-1157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725438
135 https://doi.org/10.1007/s10973-010-1157-2
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10973-010-1229-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052860975
138 https://doi.org/10.1007/s10973-010-1229-3
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10973-010-1237-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018174036
141 https://doi.org/10.1007/s10973-010-1237-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10973-011-2133-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001431490
144 https://doi.org/10.1007/s10973-011-2133-1
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11749-012-0308-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035966942
147 https://doi.org/10.1007/s11749-012-0308-0
148 rdf:type schema:CreativeWork
149 sg:pub.10.2478/s11696-009-0109-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011710975
150 https://doi.org/10.2478/s11696-009-0109-4
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1109705924 schema:CreativeWork
153 https://doi.org/10.1002/0470013192.bsa239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002080385
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/9780470423837.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250310
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/cem.2561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024890806
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0016-2361(96)00030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008533944
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0165-2370(96)00932-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025131625
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0584-8539(94)80207-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029401152
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.apacoust.2011.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258070
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.biotechadv.2009.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040391933
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.chemolab.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010976130
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.chemolab.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043864537
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.chemolab.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413585
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.csda.2003.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008800036
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.fuel.2006.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042897475
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.pecs.2006.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044392350
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0010-2180(70)80037-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050145679
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0165-2370(03)00065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277561
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0167-9473(03)00032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032526128
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s1386-1425(99)00088-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009048065
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1017/cbo9780511812651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665985
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ef0502397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012909256
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/ie0201157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055596114
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/01621459.1995.10476630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304913
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tsmcc.2009.2039479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798201
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1365-3180.2008.00598.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040595181
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1469-1809.1936.tb02137.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660865
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pone.0076101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032830636
204 rdf:type schema:CreativeWork
205 https://doi.org/10.2307/1403797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069474052
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2307/3315952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053413161
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
210 schema:name Departamento de Ingeniería Industrial II, Escuela Politécnica Superior, Universidade da Coruña, Ferrol, Spain
211 Departamento de Matemáticas, Escuela Politécnica Superior, Universidade da Coruña, Ferrol, Spain
212 Departamento de Matemáticas, Facultad de Informática, Universidade da Coruña, A Coruña, Spain
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...