Thermal study in Eu3+-doped boehmite nanofibers and luminescence properties of the corresponding Eu3+:Al2O3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08-29

AUTHORS

Xiangyu Xu, Yuxin Liu, Zhi Lv, Jiaqing Song, Mingyuan He, Qian Wang, Lijun Yan, Zhaofei Li

ABSTRACT

Eu3+-doped boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2 mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum. More... »

PAGES

1585-1592

References to SciGraph publications

  • 2012-10-09. Nano-alumina by gel combustion, its thermal characterization and slurry-based coating on stainless steel surface in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009-08-26. Vapour Phase Hydrogenation of Cinnamaldehyde over Ni/γ-Al2O3 Catalysts: Interesting Reaction Network in CATALYSIS LETTERS
  • 2012-07-03. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009-07. Role of the dispersion route on the phase transformation of a nano-crystalline transition alumina in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-10-11. An indirect thermodynamic model developed for initial stage sintering of an alumina compacts by using porosity measurements in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2007-07-11. XRD, TEM and thermal analysis of Fe doped boehmite nanofibres and nanosheets in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2013-03-05. Hydration of high alumina cement–silica fume composite with addition of Portland cement or sodium polyphosphate under hydrothermal treatment in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2013-11-19. Thermal study of boehmite nanofibers with controlled particle size in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-10-13. Thermal and morphological study of Al2O3 nanofibers derived from boehmite precursor in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-08-18. Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1996-01. Pore-structure stability and phase transformation in pure and M-doped (M = La, Ce, Nd, Gd, Cu, Fe) alumina membranes and catalyst supports in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 2009-06-19. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009-06-10. Thermal decomposition of Bayer precipitates formed at varying temperatures in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-014-4073-z

    DOI

    http://dx.doi.org/10.1007/s10973-014-4073-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021467997


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Xiangyu", 
            "id": "sg:person.010317663573.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317663573.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yuxin", 
            "id": "sg:person.014470526147.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470526147.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lv", 
            "givenName": "Zhi", 
            "id": "sg:person.011644020464.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644020464.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jiaqing", 
            "id": "sg:person.011115244173.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115244173.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 200062, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.22069.3f", 
              "name": [
                "Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 200062, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Mingyuan", 
            "id": "sg:person.016425135365.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425135365.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Petrochemical Research Institute of Petrochina, 100195, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.453058.f", 
              "name": [
                "Petrochemical Research Institute of Petrochina, 100195, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Qian", 
            "id": "sg:person.012737220476.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737220476.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Petrochemical Research Institute of Petrochina, 100195, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.453058.f", 
              "name": [
                "Petrochemical Research Institute of Petrochina, 100195, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Lijun", 
            "id": "sg:person.015127542076.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127542076.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Petrochemical Research Institute of Petrochina, 100195, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.453058.f", 
              "name": [
                "Petrochemical Research Institute of Petrochina, 100195, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Zhaofei", 
            "id": "sg:person.013427656211.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013427656211.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-009-0136-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031074948", 
              "https://doi.org/10.1007/s10973-009-0136-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-013-3493-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032294062", 
              "https://doi.org/10.1007/s10973-013-3493-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10562-009-0127-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048980264", 
              "https://doi.org/10.1007/s10562-009-0127-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-012-2534-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031715389", 
              "https://doi.org/10.1007/s10973-012-2534-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-009-0179-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004891884", 
              "https://doi.org/10.1007/s10973-009-0179-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00274471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036833074", 
              "https://doi.org/10.1007/bf00274471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-011-1922-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036283652", 
              "https://doi.org/10.1007/s10973-011-1922-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-013-3042-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011347066", 
              "https://doi.org/10.1007/s10973-013-3042-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-012-2700-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038548713", 
              "https://doi.org/10.1007/s10973-012-2700-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-011-1962-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010660613", 
              "https://doi.org/10.1007/s10973-011-1962-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-009-0260-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033306749", 
              "https://doi.org/10.1007/s10973-009-0260-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-011-1830-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009391270", 
              "https://doi.org/10.1007/s10973-011-1830-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-006-8248-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021047690", 
              "https://doi.org/10.1007/s10973-006-8248-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-08-29", 
        "datePublishedReg": "2014-08-29", 
        "description": "Eu3+-doped\n boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry\u2013differential scanning calorimetry. All materials showed the phase transition from \u03b3-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2\u00a0mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10973-014-4073-z", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "118"
          }
        ], 
        "keywords": [
          "boehmite nanofibers", 
          "thermal stability", 
          "specific surface area", 
          "good thermal stability", 
          "increase of Eu3", 
          "thermogravimetry-differential scanning calorimetry", 
          "series of characterizations", 
          "nanofiber materials", 
          "nanofibers", 
          "surface area", 
          "\u03b3-Al2O3", 
          "transition temperature", 
          "scanning calorimetry", 
          "photoluminescence spectra", 
          "maximum Eu3", 
          "concentration of Eu3", 
          "materials", 
          "thermal studies", 
          "luminescence properties", 
          "stability", 
          "Eu3", 
          "phase transition", 
          "different Eu3", 
          "temperature", 
          "properties", 
          "calorimetry", 
          "concentration", 
          "surfactants", 
          "gradual decrease", 
          "increase", 
          "characterization", 
          "ions", 
          "transition", 
          "area", 
          "spectra", 
          "decrease", 
          "series", 
          "form", 
          "study"
        ], 
        "name": "Thermal study in Eu3+-doped boehmite nanofibers and luminescence properties of the corresponding Eu3+:Al2O3", 
        "pagination": "1585-1592", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021467997"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-014-4073-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-014-4073-z", 
          "https://app.dimensions.ai/details/publication/pub.1021467997"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_621.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10973-014-4073-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4073-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4073-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4073-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4073-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      78 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-014-4073-z schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 anzsrc-for:0306
    4 anzsrc-for:0399
    5 schema:author N546d5670f09f4dbe8e6f8a624ff977ba
    6 schema:citation sg:pub.10.1007/bf00274471
    7 sg:pub.10.1007/s10562-009-0127-4
    8 sg:pub.10.1007/s10973-006-8248-0
    9 sg:pub.10.1007/s10973-009-0136-y
    10 sg:pub.10.1007/s10973-009-0179-0
    11 sg:pub.10.1007/s10973-009-0260-8
    12 sg:pub.10.1007/s10973-011-1830-0
    13 sg:pub.10.1007/s10973-011-1922-x
    14 sg:pub.10.1007/s10973-011-1962-2
    15 sg:pub.10.1007/s10973-012-2534-9
    16 sg:pub.10.1007/s10973-012-2700-0
    17 sg:pub.10.1007/s10973-013-3042-2
    18 sg:pub.10.1007/s10973-013-3493-5
    19 schema:datePublished 2014-08-29
    20 schema:datePublishedReg 2014-08-29
    21 schema:description Eu3+-doped boehmite nanofiber materials with different Eu3+ concentrations were synthesized without any surfactant, and followed by a series of characterizations. It was found that the boehmite nanofibers became coarser with the increase of Eu3+ concentration, which resulted in a gradual decrease of their specific surface areas. Moreover, the thermal stability of the boehmite nanofibers was studied by thermogravimetry–differential scanning calorimetry. All materials showed the phase transition from γ-Al2O3 to other forms. Yet the transition temperature was increased with the increase of Eu3+ concentration. The Eu3+-doped boehmite nanofibers with the maximum Eu3+ concentrations showed the best thermal stability. Photoluminescence spectra showed that the 2 mol% of doping concentration of Eu3+ ions in Eu3+:Al2O3 nanofiber was optimum.
    22 schema:genre article
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N0b80872066c54b1eb973b9ff4ef69030
    25 N2ad089af7d77496f95ea9d4f8a66dab3
    26 sg:journal.1294862
    27 schema:keywords Eu3
    28 area
    29 boehmite nanofibers
    30 calorimetry
    31 characterization
    32 concentration
    33 concentration of Eu3
    34 decrease
    35 different Eu3
    36 form
    37 good thermal stability
    38 gradual decrease
    39 increase
    40 increase of Eu3
    41 ions
    42 luminescence properties
    43 materials
    44 maximum Eu3
    45 nanofiber materials
    46 nanofibers
    47 phase transition
    48 photoluminescence spectra
    49 properties
    50 scanning calorimetry
    51 series
    52 series of characterizations
    53 specific surface area
    54 spectra
    55 stability
    56 study
    57 surface area
    58 surfactants
    59 temperature
    60 thermal stability
    61 thermal studies
    62 thermogravimetry-differential scanning calorimetry
    63 transition
    64 transition temperature
    65 γ-Al2O3
    66 schema:name Thermal study in Eu3+-doped boehmite nanofibers and luminescence properties of the corresponding Eu3+:Al2O3
    67 schema:pagination 1585-1592
    68 schema:productId N5e029399a3da4298a73875c2dcdeb824
    69 Nf9e9ae45d2244998928d2f86308175e9
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021467997
    71 https://doi.org/10.1007/s10973-014-4073-z
    72 schema:sdDatePublished 2022-10-01T06:39
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N8c1f5f892985429c93c38a837f14b5ee
    75 schema:url https://doi.org/10.1007/s10973-014-4073-z
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N049a6129ec6d433ea389511768536c65 rdf:first sg:person.015127542076.44
    80 rdf:rest Na9658e529b624c3d81b40b16c4f3648b
    81 N0b80872066c54b1eb973b9ff4ef69030 schema:volumeNumber 118
    82 rdf:type schema:PublicationVolume
    83 N2ad089af7d77496f95ea9d4f8a66dab3 schema:issueNumber 3
    84 rdf:type schema:PublicationIssue
    85 N546d5670f09f4dbe8e6f8a624ff977ba rdf:first sg:person.010317663573.64
    86 rdf:rest N675fe683be2d4d6ebc6f3c96867a9b89
    87 N5e029399a3da4298a73875c2dcdeb824 schema:name dimensions_id
    88 schema:value pub.1021467997
    89 rdf:type schema:PropertyValue
    90 N675fe683be2d4d6ebc6f3c96867a9b89 rdf:first sg:person.014470526147.93
    91 rdf:rest Nca33931d3a6e4ae099d426e61c455dbe
    92 N8c1f5f892985429c93c38a837f14b5ee schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Na16c466996994cd29aa101a9fea07d6d rdf:first sg:person.011115244173.47
    95 rdf:rest Nf787f857acf542a3942ae4b95f51b7ea
    96 Na9658e529b624c3d81b40b16c4f3648b rdf:first sg:person.013427656211.76
    97 rdf:rest rdf:nil
    98 Nca33931d3a6e4ae099d426e61c455dbe rdf:first sg:person.011644020464.33
    99 rdf:rest Na16c466996994cd29aa101a9fea07d6d
    100 Nf2a905ffd9ed46cfb0a04a2fd3b3bf67 rdf:first sg:person.012737220476.15
    101 rdf:rest N049a6129ec6d433ea389511768536c65
    102 Nf787f857acf542a3942ae4b95f51b7ea rdf:first sg:person.016425135365.16
    103 rdf:rest Nf2a905ffd9ed46cfb0a04a2fd3b3bf67
    104 Nf9e9ae45d2244998928d2f86308175e9 schema:name doi
    105 schema:value 10.1007/s10973-014-4073-z
    106 rdf:type schema:PropertyValue
    107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Chemical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Macromolecular and Materials Chemistry
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Physical Chemistry (incl. Structural)
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Other Chemical Sciences
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1294862 schema:issn 1388-6150
    120 1572-8943
    121 schema:name Journal of Thermal Analysis and Calorimetry
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.010317663573.64 schema:affiliation grid-institutes:grid.48166.3d
    125 schema:familyName Xu
    126 schema:givenName Xiangyu
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317663573.64
    128 rdf:type schema:Person
    129 sg:person.011115244173.47 schema:affiliation grid-institutes:grid.48166.3d
    130 schema:familyName Song
    131 schema:givenName Jiaqing
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011115244173.47
    133 rdf:type schema:Person
    134 sg:person.011644020464.33 schema:affiliation grid-institutes:grid.48166.3d
    135 schema:familyName Lv
    136 schema:givenName Zhi
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644020464.33
    138 rdf:type schema:Person
    139 sg:person.012737220476.15 schema:affiliation grid-institutes:grid.453058.f
    140 schema:familyName Wang
    141 schema:givenName Qian
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737220476.15
    143 rdf:type schema:Person
    144 sg:person.013427656211.76 schema:affiliation grid-institutes:grid.453058.f
    145 schema:familyName Li
    146 schema:givenName Zhaofei
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013427656211.76
    148 rdf:type schema:Person
    149 sg:person.014470526147.93 schema:affiliation grid-institutes:grid.48166.3d
    150 schema:familyName Liu
    151 schema:givenName Yuxin
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470526147.93
    153 rdf:type schema:Person
    154 sg:person.015127542076.44 schema:affiliation grid-institutes:grid.453058.f
    155 schema:familyName Yan
    156 schema:givenName Lijun
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015127542076.44
    158 rdf:type schema:Person
    159 sg:person.016425135365.16 schema:affiliation grid-institutes:grid.22069.3f
    160 schema:familyName He
    161 schema:givenName Mingyuan
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425135365.16
    163 rdf:type schema:Person
    164 sg:pub.10.1007/bf00274471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036833074
    165 https://doi.org/10.1007/bf00274471
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s10562-009-0127-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048980264
    168 https://doi.org/10.1007/s10562-009-0127-4
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10973-006-8248-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021047690
    171 https://doi.org/10.1007/s10973-006-8248-0
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s10973-009-0136-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031074948
    174 https://doi.org/10.1007/s10973-009-0136-y
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s10973-009-0179-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004891884
    177 https://doi.org/10.1007/s10973-009-0179-0
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10973-009-0260-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033306749
    180 https://doi.org/10.1007/s10973-009-0260-8
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10973-011-1830-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009391270
    183 https://doi.org/10.1007/s10973-011-1830-0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10973-011-1922-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036283652
    186 https://doi.org/10.1007/s10973-011-1922-x
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s10973-011-1962-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010660613
    189 https://doi.org/10.1007/s10973-011-1962-2
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10973-012-2534-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031715389
    192 https://doi.org/10.1007/s10973-012-2534-9
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10973-012-2700-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038548713
    195 https://doi.org/10.1007/s10973-012-2700-0
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10973-013-3042-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011347066
    198 https://doi.org/10.1007/s10973-013-3042-2
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10973-013-3493-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032294062
    201 https://doi.org/10.1007/s10973-013-3493-5
    202 rdf:type schema:CreativeWork
    203 grid-institutes:grid.22069.3f schema:alternateName Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 200062, Shanghai, China
    204 schema:name Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 200062, Shanghai, China
    205 rdf:type schema:Organization
    206 grid-institutes:grid.453058.f schema:alternateName Petrochemical Research Institute of Petrochina, 100195, Beijing, China
    207 schema:name Petrochemical Research Institute of Petrochina, 100195, Beijing, China
    208 rdf:type schema:Organization
    209 grid-institutes:grid.48166.3d schema:alternateName State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
    210 schema:name State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...