Statistical functional approach for interlaboratory studies with thermal data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Salvador Naya, Javier Tarrío-Saavedra, Jorge López-Beceiro, Mario Francisco-Fernández, Miguel Flores, Ramón Artiaga

ABSTRACT

A new statistical functional data analysis (FDA) approach to perform interlaboratory tests is proposed and successfully applied to thermogravimetry (TG) and differential scanning calorimetry (DSC). This functional approach prevents the typical losses of information associated to the dimension reduction processes. It allows the location and variability of the thermal curves obtained by the application of a particular test procedure. The intra- and inter-laboratory variability and location have been estimated using a FDA approach as well as the traditional reproducibility and repeatability studies. To evaluate the new approach, 105 TG curves and 90 calorimetric curves were obtained from calcium oxalate monohydrate. The obtained curves correspond to seven simulated laboratories, 15 curves per laboratory. Functional mean and variance were estimated. From a functional point of view, these descriptive statistics consider each datum as a curve or function of infinite dimension. Confidence bands were computed using smooth bootstrap resampling. A laboratory consistency study is performed in a functional context. The functional depth approach based on bootstrap resampling is a useful tool to identify outliers among the laboratories. The new FDA approach permits to identify as outliers the thermal curves obtained with old or wrong calibrations. Functional analysis of variance test based on random projections and the false discovery rate procedure (FDR) provides which laboratories obtain significant different thermal curves. This approach can be applied to perform interlaboratory test programs where the response of the test result is functional, as, for example, DSC and TG tests, without having to assume that data follow a Gaussian distribution. More... »

PAGES

1229-1243

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-014-4039-1

DOI

http://dx.doi.org/10.1007/s10973-014-4039-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037587381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naya", 
        "givenName": "Salvador", 
        "id": "sg:person.010043463111.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarr\u00edo-Saavedra", 
        "givenName": "Javier", 
        "id": "sg:person.010527411315.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-Beceiro", 
        "givenName": "Jorge", 
        "id": "sg:person.07766551031.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Facultade de Inform\u00e1tica, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francisco-Fern\u00e1ndez", 
        "givenName": "Mario", 
        "id": "sg:person.01027153607.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad de Las Am\u00e9ricas", 
          "id": "https://www.grid.ac/institutes/grid.442184.f", 
          "name": [
            "Escuela de Ciencias F\u00edsicas y Matem\u00e1ticas, Universidad de Las Am\u00e9ricas, Quito, Ecuador"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flores", 
        "givenName": "Miguel", 
        "id": "sg:person.010664547436.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664547436.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of A Coru\u00f1a", 
          "id": "https://www.grid.ac/institutes/grid.8073.c", 
          "name": [
            "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artiaga", 
        "givenName": "Ram\u00f3n", 
        "id": "sg:person.011361512031.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/0470013192.bsa239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002080385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2008.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005837678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/25286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007248726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2003.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008800036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010976130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-010-1157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725438", 
          "https://doi.org/10.1007/s10973-010-1157-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018931290", 
          "https://doi.org/10.1007/s00180-007-0053-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018931290", 
          "https://doi.org/10.1007/s00180-007-0053-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-010-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029996736", 
          "https://doi.org/10.1007/s11749-010-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-010-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029996736", 
          "https://doi.org/10.1007/s11749-010-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033851965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033851965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-2670(00)01115-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035543039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemolab.2012.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/env.878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040105854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578333", 
          "https://doi.org/10.1007/bf02595706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578333", 
          "https://doi.org/10.1007/bf02595706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051809453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2005.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051809453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10473671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1998.10473755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1998.10473763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v051.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672762"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "A new statistical functional data analysis (FDA) approach to perform interlaboratory tests is proposed and successfully applied to thermogravimetry (TG) and differential scanning calorimetry (DSC). This functional approach prevents the typical losses of information associated to the dimension reduction processes. It allows the location and variability of the thermal curves obtained by the application of a particular test procedure. The intra- and inter-laboratory variability and location have been estimated using a FDA approach as well as the traditional reproducibility and repeatability studies. To evaluate the new approach, 105 TG curves and 90 calorimetric curves were obtained from calcium oxalate monohydrate. The obtained curves correspond to seven simulated laboratories, 15 curves per laboratory. Functional mean and variance were estimated. From a functional point of view, these descriptive statistics consider each datum as a curve or function of infinite dimension. Confidence bands were computed using smooth bootstrap resampling. A laboratory consistency study is performed in a functional context. The functional depth approach based on bootstrap resampling is a useful tool to identify outliers among the laboratories. The new FDA approach permits to identify as outliers the thermal curves obtained with old or wrong calibrations. Functional analysis of variance test based on random projections and the false discovery rate procedure (FDR) provides which laboratories obtain significant different thermal curves. This approach can be applied to perform interlaboratory test programs where the response of the test result is functional, as, for example, DSC and TG tests, without having to assume that data follow a Gaussian distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-014-4039-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "name": "Statistical functional approach for interlaboratory studies with thermal data", 
    "pagination": "1229-1243", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b30d9c3237f6af735a8fad7628997d7ad0288b5c266bc43f80b1b131906e29f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-014-4039-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037587381"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-014-4039-1", 
      "https://app.dimensions.ai/details/publication/pub.1037587381"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-014-4039-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4039-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4039-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4039-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-4039-1'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-014-4039-1 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne80577bc74a342029466b303a9d3f7c3
4 schema:citation sg:pub.10.1007/bf02595706
5 sg:pub.10.1007/s00180-007-0053-0
6 sg:pub.10.1007/s10973-010-1157-2
7 sg:pub.10.1007/s11749-010-0185-3
8 https://app.dimensions.ai/details/publication/pub.1033851965
9 https://doi.org/10.1002/0470013192.bsa239
10 https://doi.org/10.1002/env.878
11 https://doi.org/10.1016/j.chemolab.2010.11.006
12 https://doi.org/10.1016/j.chemolab.2012.07.003
13 https://doi.org/10.1016/j.csda.2003.10.021
14 https://doi.org/10.1016/j.csda.2005.10.012
15 https://doi.org/10.1016/j.polymdegradstab.2008.08.006
16 https://doi.org/10.1016/s0003-2670(00)01115-6
17 https://doi.org/10.1080/01621459.1997.10473671
18 https://doi.org/10.1080/01621459.1998.10473755
19 https://doi.org/10.1080/01621459.1998.10473763
20 https://doi.org/10.18637/jss.v051.i04
21 https://doi.org/10.5772/25286
22 schema:datePublished 2014-11
23 schema:datePublishedReg 2014-11-01
24 schema:description A new statistical functional data analysis (FDA) approach to perform interlaboratory tests is proposed and successfully applied to thermogravimetry (TG) and differential scanning calorimetry (DSC). This functional approach prevents the typical losses of information associated to the dimension reduction processes. It allows the location and variability of the thermal curves obtained by the application of a particular test procedure. The intra- and inter-laboratory variability and location have been estimated using a FDA approach as well as the traditional reproducibility and repeatability studies. To evaluate the new approach, 105 TG curves and 90 calorimetric curves were obtained from calcium oxalate monohydrate. The obtained curves correspond to seven simulated laboratories, 15 curves per laboratory. Functional mean and variance were estimated. From a functional point of view, these descriptive statistics consider each datum as a curve or function of infinite dimension. Confidence bands were computed using smooth bootstrap resampling. A laboratory consistency study is performed in a functional context. The functional depth approach based on bootstrap resampling is a useful tool to identify outliers among the laboratories. The new FDA approach permits to identify as outliers the thermal curves obtained with old or wrong calibrations. Functional analysis of variance test based on random projections and the false discovery rate procedure (FDR) provides which laboratories obtain significant different thermal curves. This approach can be applied to perform interlaboratory test programs where the response of the test result is functional, as, for example, DSC and TG tests, without having to assume that data follow a Gaussian distribution.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N63231c496d05478ca169fd740f8effcf
29 Nf019b4f27ffd464988e4b1e793178947
30 sg:journal.1294862
31 schema:name Statistical functional approach for interlaboratory studies with thermal data
32 schema:pagination 1229-1243
33 schema:productId N1d5f67fb60fe40088bb308bc5ccf6241
34 Nc7f5f969babd4ce386df6a31abd9156e
35 Nd672397406ca469381ae36551cc5ef93
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587381
37 https://doi.org/10.1007/s10973-014-4039-1
38 schema:sdDatePublished 2019-04-10T16:43
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nea88f2ebe9f447638b1325a5a42fe980
41 schema:url http://link.springer.com/10.1007%2Fs10973-014-4039-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N128380e37a154cb8a5c74cfdf78cad84 rdf:first sg:person.010527411315.90
46 rdf:rest Naaa2256899fb433a878cd72a38e0d233
47 N1b5c6ced028647b6bc5064e5c3798d6a rdf:first sg:person.011361512031.23
48 rdf:rest rdf:nil
49 N1d5f67fb60fe40088bb308bc5ccf6241 schema:name dimensions_id
50 schema:value pub.1037587381
51 rdf:type schema:PropertyValue
52 N427fefedc58142ff92aac7f5070ba704 rdf:first sg:person.010664547436.21
53 rdf:rest N1b5c6ced028647b6bc5064e5c3798d6a
54 N63231c496d05478ca169fd740f8effcf schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 Naaa2256899fb433a878cd72a38e0d233 rdf:first sg:person.07766551031.96
57 rdf:rest Nf6a30129a3454852a31f5d8d61026533
58 Nc7f5f969babd4ce386df6a31abd9156e schema:name doi
59 schema:value 10.1007/s10973-014-4039-1
60 rdf:type schema:PropertyValue
61 Nd672397406ca469381ae36551cc5ef93 schema:name readcube_id
62 schema:value b30d9c3237f6af735a8fad7628997d7ad0288b5c266bc43f80b1b131906e29f9
63 rdf:type schema:PropertyValue
64 Ne80577bc74a342029466b303a9d3f7c3 rdf:first sg:person.010043463111.42
65 rdf:rest N128380e37a154cb8a5c74cfdf78cad84
66 Nea88f2ebe9f447638b1325a5a42fe980 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf019b4f27ffd464988e4b1e793178947 schema:volumeNumber 118
69 rdf:type schema:PublicationVolume
70 Nf6a30129a3454852a31f5d8d61026533 rdf:first sg:person.01027153607.13
71 rdf:rest N427fefedc58142ff92aac7f5070ba704
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
76 schema:name Statistics
77 rdf:type schema:DefinedTerm
78 sg:journal.1294862 schema:issn 1388-6150
79 1572-8943
80 schema:name Journal of Thermal Analysis and Calorimetry
81 rdf:type schema:Periodical
82 sg:person.010043463111.42 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
83 schema:familyName Naya
84 schema:givenName Salvador
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42
86 rdf:type schema:Person
87 sg:person.01027153607.13 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
88 schema:familyName Francisco-Fernández
89 schema:givenName Mario
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13
91 rdf:type schema:Person
92 sg:person.010527411315.90 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
93 schema:familyName Tarrío-Saavedra
94 schema:givenName Javier
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90
96 rdf:type schema:Person
97 sg:person.010664547436.21 schema:affiliation https://www.grid.ac/institutes/grid.442184.f
98 schema:familyName Flores
99 schema:givenName Miguel
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664547436.21
101 rdf:type schema:Person
102 sg:person.011361512031.23 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
103 schema:familyName Artiaga
104 schema:givenName Ramón
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23
106 rdf:type schema:Person
107 sg:person.07766551031.96 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
108 schema:familyName López-Beceiro
109 schema:givenName Jorge
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96
111 rdf:type schema:Person
112 sg:pub.10.1007/bf02595706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578333
113 https://doi.org/10.1007/bf02595706
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00180-007-0053-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018931290
116 https://doi.org/10.1007/s00180-007-0053-0
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10973-010-1157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725438
119 https://doi.org/10.1007/s10973-010-1157-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11749-010-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029996736
122 https://doi.org/10.1007/s11749-010-0185-3
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1033851965 schema:CreativeWork
125 https://doi.org/10.1002/0470013192.bsa239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002080385
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/env.878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040105854
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.chemolab.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010976130
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.chemolab.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413585
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.csda.2003.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008800036
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.csda.2005.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051809453
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.polymdegradstab.2008.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005837678
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0003-2670(00)01115-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035543039
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/01621459.1997.10473671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305216
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/01621459.1998.10473755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305394
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/01621459.1998.10473763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305402
146 rdf:type schema:CreativeWork
147 https://doi.org/10.18637/jss.v051.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672762
148 rdf:type schema:CreativeWork
149 https://doi.org/10.5772/25286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007248726
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.442184.f schema:alternateName Universidad de Las Américas
152 schema:name Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
155 schema:name Escola Politécnica Superior, Universidade da Coruña, Ferrol, Spain
156 Facultade de Informática, Universidade da Coruña, A Coruña, Spain
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...