Simulation study for generalized logistic function in thermal data modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Javier Tarrío-Saavedra, Jorge López-Beceiro, Salvador Naya, Mario Francisco-Fernández, Ramón Artiaga

ABSTRACT

The principal aim of the present study is to describe, analyze, and compare from a statistical standpoint the generalized logistic model with some well-known models used in the solid-state kinetics: power law, Avrami–Erofeev, and reaction order. For this purpose, synthetic conversion curves that simulate the kinetic processes were generated using the power law, Avrami–Erofeev, and reaction order models, where the Arrhenius equation was assumed in all the cases. This comprehensive simulation study allows to describe the relationship between the parameters belonging to the proposed generalized logistic model and the pointed traditional models’ parameters, and also to validate the performance of the generalized logistic model in a wide variety of cases where other methods can be applied. Performing this analysis has been necessary to employ some new statistical techniques in thermal analysis modeling as the generalized additive models, and to perform global optimization evolutionary algorithms as the differential evolution for solving the non-linear regression problem. In order to implement these techniques, R statistical software routines were developed and applied. More... »

PAGES

1253-1268

References to SciGraph publications

  • 1997-12. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces in JOURNAL OF GLOBAL OPTIMIZATION
  • 2013-08. Effect of nanotubes on the thermal stability of polystyrene in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2009. ggplot2, Elegant Graphics for Data Analysis in NONE
  • 2007-01. Evaluating the logistic mixture model on real and simulated TG curves in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2013-12. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve in CHEMISTRY CENTRAL JOURNAL
  • 2012-09. Study of gypsum by PDSC in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2011-04. Thermal characterization of ammonium alum in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2014-06. Optimizing fitting parameters in thermogravimetry in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10973-014-3887-z

    DOI

    http://dx.doi.org/10.1007/s10973-014-3887-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022075855


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tarr\u00edo-Saavedra", 
            "givenName": "Javier", 
            "id": "sg:person.010527411315.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00f3pez-Beceiro", 
            "givenName": "Jorge", 
            "id": "sg:person.07766551031.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naya", 
            "givenName": "Salvador", 
            "id": "sg:person.010043463111.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Facultade de Inform\u00e1tica, Universidade da Coru\u00f1a, A Coru\u00f1a, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Francisco-Fern\u00e1ndez", 
            "givenName": "Mario", 
            "id": "sg:person.01027153607.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of A Coru\u00f1a", 
              "id": "https://www.grid.ac/institutes/grid.8073.c", 
              "name": [
                "Escola Polit\u00e9cnica Superior, Universidade da Coru\u00f1a, Ferrol, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artiaga", 
            "givenName": "Ram\u00f3n", 
            "id": "sg:person.011361512031.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-012-2335-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003590352", 
              "https://doi.org/10.1007/s10973-012-2335-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-010-1189-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004258804", 
              "https://doi.org/10.1007/s10973-010-1189-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1521-3935(19991001)200:10<2294::aid-macp2294>3.0.co;2-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009188666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymdegradstab.2004.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010700345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tca.2011.03.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011707925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008202821328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012950914", 
              "https://doi.org/10.1023/a:1008202821328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6031(00)00443-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014383963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.1023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017662972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-013-3623-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019104135", 
              "https://doi.org/10.1007/s10973-013-3623-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cp40564d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022038506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eurpolymj.2013.04.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024867969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.2561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024890806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystems.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028846994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cej.2006.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034760975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemolab.2012.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036413585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1573-4374(08)80016-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040766410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98141-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041188628", 
              "https://doi.org/10.1007/978-0-387-98141-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98141-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041188628", 
              "https://doi.org/10.1007/978-0-387-98141-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-006-8283-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042964163", 
              "https://doi.org/10.1007/s10973-006-8283-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-013-3160-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044207332", 
              "https://doi.org/10.1007/s10973-013-3160-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-153x-7-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045513048", 
              "https://doi.org/10.1186/1752-153x-7-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac60244a038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055052713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac60270a007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055056938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700514t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef700514t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055481069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050589u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp050589u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056060134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp062746a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056066493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp062746a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056066493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp110895z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056080670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp110895z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056080670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp208070d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056085523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp407526r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056096895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/10.2.290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059852819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1520/jai12795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067618319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.6028/jres.070a.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073599229"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-11", 
        "datePublishedReg": "2014-11-01", 
        "description": "The principal aim of the present study is to describe, analyze, and compare from a statistical standpoint the generalized logistic model with some well-known models used in the solid-state kinetics: power law, Avrami\u2013Erofeev, and reaction order. For this purpose, synthetic conversion curves that simulate the kinetic processes were generated using the power law, Avrami\u2013Erofeev, and reaction order models, where the Arrhenius equation was assumed in all the cases. This comprehensive simulation study allows to describe the relationship between the parameters belonging to the proposed generalized logistic model and the pointed traditional models\u2019 parameters, and also to validate the performance of the generalized logistic model in a wide variety of cases where other methods can be applied. Performing this analysis has been necessary to employ some new statistical techniques in thermal analysis modeling as the generalized additive models, and to perform global optimization evolutionary algorithms as the differential evolution for solving the non-linear regression problem. In order to implement these techniques, R statistical software routines were developed and applied.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10973-014-3887-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294862", 
            "issn": [
              "1388-6150", 
              "1572-8943"
            ], 
            "name": "Journal of Thermal Analysis and Calorimetry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "118"
          }
        ], 
        "name": "Simulation study for generalized logistic function in thermal data modeling", 
        "pagination": "1253-1268", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "692c8c32821bf3bfae521631c3e14401725d2059585a08703c3103712e07c3e8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10973-014-3887-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022075855"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10973-014-3887-z", 
          "https://app.dimensions.ai/details/publication/pub.1022075855"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10973-014-3887-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3887-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3887-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3887-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3887-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10973-014-3887-z schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N06b1a2a1c6954a0ea6fea69830205d9d
    4 schema:citation sg:pub.10.1007/978-0-387-98141-3
    5 sg:pub.10.1007/s10973-006-8283-x
    6 sg:pub.10.1007/s10973-010-1189-7
    7 sg:pub.10.1007/s10973-012-2335-1
    8 sg:pub.10.1007/s10973-013-3160-x
    9 sg:pub.10.1007/s10973-013-3623-0
    10 sg:pub.10.1023/a:1008202821328
    11 sg:pub.10.1186/1752-153x-7-25
    12 https://doi.org/10.1002/(sici)1521-3935(19991001)200:10<2294::aid-macp2294>3.0.co;2-v
    13 https://doi.org/10.1002/cem.1023
    14 https://doi.org/10.1002/cem.2561
    15 https://doi.org/10.1016/j.biosystems.2012.06.004
    16 https://doi.org/10.1016/j.cej.2006.11.007
    17 https://doi.org/10.1016/j.chemolab.2012.07.003
    18 https://doi.org/10.1016/j.eurpolymj.2013.04.026
    19 https://doi.org/10.1016/j.polymdegradstab.2004.03.006
    20 https://doi.org/10.1016/j.tca.2011.03.034
    21 https://doi.org/10.1016/s0040-6031(00)00443-3
    22 https://doi.org/10.1016/s1573-4374(08)80016-7
    23 https://doi.org/10.1021/ac60244a038
    24 https://doi.org/10.1021/ac60270a007
    25 https://doi.org/10.1021/ef700514t
    26 https://doi.org/10.1021/jp050589u
    27 https://doi.org/10.1021/jp062746a
    28 https://doi.org/10.1021/jp110895z
    29 https://doi.org/10.1021/jp208070d
    30 https://doi.org/10.1021/jp407526r
    31 https://doi.org/10.1039/c2cp40564d
    32 https://doi.org/10.1093/jxb/10.2.290
    33 https://doi.org/10.1520/jai12795
    34 https://doi.org/10.6028/jres.070a.043
    35 schema:datePublished 2014-11
    36 schema:datePublishedReg 2014-11-01
    37 schema:description The principal aim of the present study is to describe, analyze, and compare from a statistical standpoint the generalized logistic model with some well-known models used in the solid-state kinetics: power law, Avrami–Erofeev, and reaction order. For this purpose, synthetic conversion curves that simulate the kinetic processes were generated using the power law, Avrami–Erofeev, and reaction order models, where the Arrhenius equation was assumed in all the cases. This comprehensive simulation study allows to describe the relationship between the parameters belonging to the proposed generalized logistic model and the pointed traditional models’ parameters, and also to validate the performance of the generalized logistic model in a wide variety of cases where other methods can be applied. Performing this analysis has been necessary to employ some new statistical techniques in thermal analysis modeling as the generalized additive models, and to perform global optimization evolutionary algorithms as the differential evolution for solving the non-linear regression problem. In order to implement these techniques, R statistical software routines were developed and applied.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N3071698bcc234f17b092a9580cf9aa3c
    42 Nf387c279240247ff809a3d5cf243507a
    43 sg:journal.1294862
    44 schema:name Simulation study for generalized logistic function in thermal data modeling
    45 schema:pagination 1253-1268
    46 schema:productId N2727f80099ef41aca6618c9e11ff7979
    47 N73a371224d2b4651be653a088f342472
    48 Ne7f68dfc44f54b329c016df91a838f12
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022075855
    50 https://doi.org/10.1007/s10973-014-3887-z
    51 schema:sdDatePublished 2019-04-10T15:51
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N018ef44244834b9fa6b93bbea063438d
    54 schema:url http://link.springer.com/10.1007%2Fs10973-014-3887-z
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N018ef44244834b9fa6b93bbea063438d schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N06b1a2a1c6954a0ea6fea69830205d9d rdf:first sg:person.010527411315.90
    61 rdf:rest N13a5e64e9d4a49318359a77ea3b96dc6
    62 N13a5e64e9d4a49318359a77ea3b96dc6 rdf:first sg:person.07766551031.96
    63 rdf:rest Nc7c0608a372841c68f6f93276ff7cee8
    64 N2727f80099ef41aca6618c9e11ff7979 schema:name readcube_id
    65 schema:value 692c8c32821bf3bfae521631c3e14401725d2059585a08703c3103712e07c3e8
    66 rdf:type schema:PropertyValue
    67 N3071698bcc234f17b092a9580cf9aa3c schema:volumeNumber 118
    68 rdf:type schema:PublicationVolume
    69 N73a371224d2b4651be653a088f342472 schema:name dimensions_id
    70 schema:value pub.1022075855
    71 rdf:type schema:PropertyValue
    72 N8ac43f1fb3744e28b6644b179e22179e rdf:first sg:person.01027153607.13
    73 rdf:rest Neff5f16a1cee4aca80bf515e597a4b0a
    74 Nc7c0608a372841c68f6f93276ff7cee8 rdf:first sg:person.010043463111.42
    75 rdf:rest N8ac43f1fb3744e28b6644b179e22179e
    76 Ne7f68dfc44f54b329c016df91a838f12 schema:name doi
    77 schema:value 10.1007/s10973-014-3887-z
    78 rdf:type schema:PropertyValue
    79 Neff5f16a1cee4aca80bf515e597a4b0a rdf:first sg:person.011361512031.23
    80 rdf:rest rdf:nil
    81 Nf387c279240247ff809a3d5cf243507a schema:issueNumber 2
    82 rdf:type schema:PublicationIssue
    83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Mathematical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Statistics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1294862 schema:issn 1388-6150
    90 1572-8943
    91 schema:name Journal of Thermal Analysis and Calorimetry
    92 rdf:type schema:Periodical
    93 sg:person.010043463111.42 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    94 schema:familyName Naya
    95 schema:givenName Salvador
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043463111.42
    97 rdf:type schema:Person
    98 sg:person.01027153607.13 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    99 schema:familyName Francisco-Fernández
    100 schema:givenName Mario
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027153607.13
    102 rdf:type schema:Person
    103 sg:person.010527411315.90 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    104 schema:familyName Tarrío-Saavedra
    105 schema:givenName Javier
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527411315.90
    107 rdf:type schema:Person
    108 sg:person.011361512031.23 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    109 schema:familyName Artiaga
    110 schema:givenName Ramón
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011361512031.23
    112 rdf:type schema:Person
    113 sg:person.07766551031.96 schema:affiliation https://www.grid.ac/institutes/grid.8073.c
    114 schema:familyName López-Beceiro
    115 schema:givenName Jorge
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07766551031.96
    117 rdf:type schema:Person
    118 sg:pub.10.1007/978-0-387-98141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041188628
    119 https://doi.org/10.1007/978-0-387-98141-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s10973-006-8283-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042964163
    122 https://doi.org/10.1007/s10973-006-8283-x
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s10973-010-1189-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004258804
    125 https://doi.org/10.1007/s10973-010-1189-7
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10973-012-2335-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003590352
    128 https://doi.org/10.1007/s10973-012-2335-1
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s10973-013-3160-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044207332
    131 https://doi.org/10.1007/s10973-013-3160-x
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s10973-013-3623-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104135
    134 https://doi.org/10.1007/s10973-013-3623-0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
    137 https://doi.org/10.1023/a:1008202821328
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1186/1752-153x-7-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045513048
    140 https://doi.org/10.1186/1752-153x-7-25
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1002/(sici)1521-3935(19991001)200:10<2294::aid-macp2294>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188666
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1002/cem.1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017662972
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1002/cem.2561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024890806
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.biosystems.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028846994
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.cej.2006.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760975
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.chemolab.2012.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413585
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.eurpolymj.2013.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024867969
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.polymdegradstab.2004.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010700345
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.tca.2011.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011707925
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/s0040-6031(00)00443-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383963
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/s1573-4374(08)80016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040766410
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1021/ac60244a038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055052713
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1021/ac60270a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055056938
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1021/ef700514t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055481069
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1021/jp050589u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056060134
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1021/jp062746a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056066493
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/jp110895z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056080670
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1021/jp208070d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056085523
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/jp407526r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056096895
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1039/c2cp40564d schema:sameAs https://app.dimensions.ai/details/publication/pub.1022038506
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1093/jxb/10.2.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059852819
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1520/jai12795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067618319
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.6028/jres.070a.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073599229
    187 rdf:type schema:CreativeWork
    188 https://www.grid.ac/institutes/grid.8073.c schema:alternateName University of A Coruña
    189 schema:name Escola Politécnica Superior, Universidade da Coruña, Ferrol, Spain
    190 Facultade de Informática, Universidade da Coruña, A Coruña, Spain
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...