Thermal conductivity of Al2O3/water nanofluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

Mohammad Hemmat Esfe, Seyfolah Saedodin, Omid Mahian, Somchai Wongwises

ABSTRACT

A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases. More... »

PAGES

675-681

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x

DOI

http://dx.doi.org/10.1007/s10973-014-3771-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017823300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemmat Esfe", 
        "givenName": "Mohammad", 
        "id": "sg:person.015143716677.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saedodin", 
        "givenName": "Seyfolah", 
        "id": "sg:person.014252566317.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411768.d", 
          "name": [
            "Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahian", 
        "givenName": "Omid", 
        "id": "sg:person.011516505301.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-002-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011867779", 
          "https://doi.org/10.1007/s00231-002-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/19/34/345702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014205880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015256066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015566638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2436472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2963/jjtp.7.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020649950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2003.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026595623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-012-2534-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031715389", 
          "https://doi.org/10.1007/s10973-012-2534-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024438603801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032513358", 
          "https://doi.org/10.1023/a:1024438603801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035720844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2012.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037404806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11378235_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458897", 
          "https://doi.org/10.1007/11378235_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2093936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042044970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10876-013-0601-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283488", 
          "https://doi.org/10.1007/s10876-013-0601-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053317983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/i160003a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055523914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.061203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.061203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1571080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2825978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2945886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062099301"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 \u00b0C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-014-3771-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "117"
      }
    ], 
    "name": "Thermal conductivity of Al2O3/water nanofluids", 
    "pagination": "675-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54ec0e4cc98c12096fd31212418c6d17ccfbd54ae00c2e5025aef6f83a75e60a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-014-3771-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017823300"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-014-3771-x", 
      "https://app.dimensions.ai/details/publication/pub.1017823300"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-014-3771-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-014-3771-x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N0a2a1b13d1bb46098d03bbd298ce0e0c
4 schema:citation sg:pub.10.1007/11378235_1
5 sg:pub.10.1007/s00231-002-0382-z
6 sg:pub.10.1007/s10876-013-0601-4
7 sg:pub.10.1007/s10973-012-2534-9
8 sg:pub.10.1007/s11051-009-9657-3
9 sg:pub.10.1023/a:1024438603801
10 https://doi.org/10.1016/j.expthermflusci.2011.04.019
11 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007
12 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016
13 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
14 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
15 https://doi.org/10.1016/j.ijthermalsci.2007.05.004
16 https://doi.org/10.1016/j.ijthermalsci.2008.03.009
17 https://doi.org/10.1016/j.rser.2010.11.035
18 https://doi.org/10.1016/j.spmi.2003.09.011
19 https://doi.org/10.1016/j.tca.2012.06.026
20 https://doi.org/10.1021/i160003a005
21 https://doi.org/10.1063/1.2093936
22 https://doi.org/10.1063/1.2436472
23 https://doi.org/10.1080/08916159808946559
24 https://doi.org/10.1088/0957-4484/19/34/345702
25 https://doi.org/10.1103/physreve.76.061203
26 https://doi.org/10.1115/1.1571080
27 https://doi.org/10.1115/1.2825978
28 https://doi.org/10.1115/1.2945886
29 https://doi.org/10.2514/2.6486
30 https://doi.org/10.2963/jjtp.7.227
31 schema:datePublished 2014-08
32 schema:datePublishedReg 2014-08-01
33 schema:description A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N2dc2d18fe8eb457c84bec218827ebf13
38 Na38af0f74a3d4d979ce3a3fdbe0d4a04
39 sg:journal.1294862
40 schema:name Thermal conductivity of Al2O3/water nanofluids
41 schema:pagination 675-681
42 schema:productId N006a88bddda9459997713665be76a566
43 N18c243d6e69745d8aab6c7ae19ecbad6
44 N9d7feae2f93f42afa1d88f6b96471169
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017823300
46 https://doi.org/10.1007/s10973-014-3771-x
47 schema:sdDatePublished 2019-04-10T22:31
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne8bf1828e3464130bf06fed5b69c9d21
50 schema:url http://link.springer.com/10.1007%2Fs10973-014-3771-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N006a88bddda9459997713665be76a566 schema:name doi
55 schema:value 10.1007/s10973-014-3771-x
56 rdf:type schema:PropertyValue
57 N0a2a1b13d1bb46098d03bbd298ce0e0c rdf:first sg:person.015143716677.04
58 rdf:rest Nb6de7642e11442a18477524b7b829c90
59 N0cf5f15fa3104c3486ccea91d22eda74 rdf:first sg:person.011516505301.04
60 rdf:rest N85c43f6bc51141e489889b2d657b9d0f
61 N18c243d6e69745d8aab6c7ae19ecbad6 schema:name dimensions_id
62 schema:value pub.1017823300
63 rdf:type schema:PropertyValue
64 N2dc2d18fe8eb457c84bec218827ebf13 schema:volumeNumber 117
65 rdf:type schema:PublicationVolume
66 N85c43f6bc51141e489889b2d657b9d0f rdf:first sg:person.012267021412.00
67 rdf:rest rdf:nil
68 N9d7feae2f93f42afa1d88f6b96471169 schema:name readcube_id
69 schema:value 54ec0e4cc98c12096fd31212418c6d17ccfbd54ae00c2e5025aef6f83a75e60a
70 rdf:type schema:PropertyValue
71 Na38af0f74a3d4d979ce3a3fdbe0d4a04 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 Nb6de7642e11442a18477524b7b829c90 rdf:first sg:person.014252566317.89
74 rdf:rest N0cf5f15fa3104c3486ccea91d22eda74
75 Ne8bf1828e3464130bf06fed5b69c9d21 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
81 schema:name Interdisciplinary Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1294862 schema:issn 1388-6150
84 1572-8943
85 schema:name Journal of Thermal Analysis and Calorimetry
86 rdf:type schema:Periodical
87 sg:person.011516505301.04 schema:affiliation https://www.grid.ac/institutes/grid.411768.d
88 schema:familyName Mahian
89 schema:givenName Omid
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04
91 rdf:type schema:Person
92 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
93 schema:familyName Wongwises
94 schema:givenName Somchai
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
96 rdf:type schema:Person
97 sg:person.014252566317.89 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
98 schema:familyName Saedodin
99 schema:givenName Seyfolah
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89
101 rdf:type schema:Person
102 sg:person.015143716677.04 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
103 schema:familyName Hemmat Esfe
104 schema:givenName Mohammad
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04
106 rdf:type schema:Person
107 sg:pub.10.1007/11378235_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038458897
108 https://doi.org/10.1007/11378235_1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00231-002-0382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867779
111 https://doi.org/10.1007/s00231-002-0382-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10876-013-0601-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283488
114 https://doi.org/10.1007/s10876-013-0601-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10973-012-2534-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031715389
117 https://doi.org/10.1007/s10973-012-2534-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11051-009-9657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952917
120 https://doi.org/10.1007/s11051-009-9657-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1024438603801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032513358
123 https://doi.org/10.1023/a:1024438603801
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.expthermflusci.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053317983
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035720844
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015256066
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123003
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319087
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijthermalsci.2007.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900106
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijthermalsci.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602480
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.rser.2010.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566638
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.spmi.2003.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026595623
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.tca.2012.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404806
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/i160003a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055523914
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.2093936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042044970
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2436472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066122
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/0957-4484/19/34/345702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014205880
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.76.061203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736760
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/1.1571080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072311
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.2825978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085787
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.2945886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062099301
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2514/2.6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494919
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2963/jjtp.7.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020649950
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.411768.d schema:alternateName Islamic Azad University, Mashhad
168 schema:name Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
171 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.412475.1 schema:alternateName Semnan University
174 schema:name Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...