Thermal conductivity of Al2O3/water nanofluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

Mohammad Hemmat Esfe, Seyfolah Saedodin, Omid Mahian, Somchai Wongwises

ABSTRACT

A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases. More... »

PAGES

675-681

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x

DOI

http://dx.doi.org/10.1007/s10973-014-3771-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017823300


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemmat Esfe", 
        "givenName": "Mohammad", 
        "id": "sg:person.015143716677.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semnan University", 
          "id": "https://www.grid.ac/institutes/grid.412475.1", 
          "name": [
            "Faculty of Mechanical Engineering, Semnan University, Semnan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saedodin", 
        "givenName": "Seyfolah", 
        "id": "sg:person.014252566317.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411768.d", 
          "name": [
            "Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahian", 
        "givenName": "Omid", 
        "id": "sg:person.011516505301.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-002-0382-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011867779", 
          "https://doi.org/10.1007/s00231-002-0382-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/19/34/345702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014205880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015256066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2010.11.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015566638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2436472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016066122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2963/jjtp.7.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020649950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spmi.2003.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026595623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-012-2534-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031715389", 
          "https://doi.org/10.1007/s10973-012-2534-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024438603801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032513358", 
          "https://doi.org/10.1023/a:1024438603801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2007.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033900106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035720844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2012.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037404806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11378235_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458897", 
          "https://doi.org/10.1007/11378235_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2093936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042044970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10876-013-0601-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283488", 
          "https://doi.org/10.1007/s10876-013-0601-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2011.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053317983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/i160003a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055523914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.061203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.061203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1571080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062072311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2825978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2945886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062099301"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 \u00b0C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10973-014-3771-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "117"
      }
    ], 
    "name": "Thermal conductivity of Al2O3/water nanofluids", 
    "pagination": "675-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54ec0e4cc98c12096fd31212418c6d17ccfbd54ae00c2e5025aef6f83a75e60a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10973-014-3771-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017823300"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10973-014-3771-x", 
      "https://app.dimensions.ai/details/publication/pub.1017823300"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10973-014-3771-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10973-014-3771-x'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10973-014-3771-x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N40386cd3da9b4c8dac743e4e36e71df7
4 schema:citation sg:pub.10.1007/11378235_1
5 sg:pub.10.1007/s00231-002-0382-z
6 sg:pub.10.1007/s10876-013-0601-4
7 sg:pub.10.1007/s10973-012-2534-9
8 sg:pub.10.1007/s11051-009-9657-3
9 sg:pub.10.1023/a:1024438603801
10 https://doi.org/10.1016/j.expthermflusci.2011.04.019
11 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007
12 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016
13 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
14 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
15 https://doi.org/10.1016/j.ijthermalsci.2007.05.004
16 https://doi.org/10.1016/j.ijthermalsci.2008.03.009
17 https://doi.org/10.1016/j.rser.2010.11.035
18 https://doi.org/10.1016/j.spmi.2003.09.011
19 https://doi.org/10.1016/j.tca.2012.06.026
20 https://doi.org/10.1021/i160003a005
21 https://doi.org/10.1063/1.2093936
22 https://doi.org/10.1063/1.2436472
23 https://doi.org/10.1080/08916159808946559
24 https://doi.org/10.1088/0957-4484/19/34/345702
25 https://doi.org/10.1103/physreve.76.061203
26 https://doi.org/10.1115/1.1571080
27 https://doi.org/10.1115/1.2825978
28 https://doi.org/10.1115/1.2945886
29 https://doi.org/10.2514/2.6486
30 https://doi.org/10.2963/jjtp.7.227
31 schema:datePublished 2014-08
32 schema:datePublishedReg 2014-08-01
33 schema:description A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N2df503f76d2148aa8efbb83370cb8c3b
38 N300305c040d84eb08c99b0f15920584e
39 sg:journal.1294862
40 schema:name Thermal conductivity of Al2O3/water nanofluids
41 schema:pagination 675-681
42 schema:productId N69b63b6db7c1495997a8dc9e0e540dcf
43 Ne20ba494b6f3449bb265062f6234b0b8
44 Ne2144531033642768ef5c23495b320eb
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017823300
46 https://doi.org/10.1007/s10973-014-3771-x
47 schema:sdDatePublished 2019-04-10T22:31
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3dc1de66f47446a78f9309156248d6f4
50 schema:url http://link.springer.com/10.1007%2Fs10973-014-3771-x
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N2df503f76d2148aa8efbb83370cb8c3b schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 N300305c040d84eb08c99b0f15920584e schema:volumeNumber 117
57 rdf:type schema:PublicationVolume
58 N3dc1de66f47446a78f9309156248d6f4 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N40386cd3da9b4c8dac743e4e36e71df7 rdf:first sg:person.015143716677.04
61 rdf:rest Nd5e355be8c8b466191ec0a900f1b9f49
62 N5efa0812864241a8ba09e90798415e7e rdf:first sg:person.012267021412.00
63 rdf:rest rdf:nil
64 N69b63b6db7c1495997a8dc9e0e540dcf schema:name dimensions_id
65 schema:value pub.1017823300
66 rdf:type schema:PropertyValue
67 Nd5e355be8c8b466191ec0a900f1b9f49 rdf:first sg:person.014252566317.89
68 rdf:rest Nef3a0e11f4f64d17827ea0e1ee58ccc1
69 Ne20ba494b6f3449bb265062f6234b0b8 schema:name doi
70 schema:value 10.1007/s10973-014-3771-x
71 rdf:type schema:PropertyValue
72 Ne2144531033642768ef5c23495b320eb schema:name readcube_id
73 schema:value 54ec0e4cc98c12096fd31212418c6d17ccfbd54ae00c2e5025aef6f83a75e60a
74 rdf:type schema:PropertyValue
75 Nef3a0e11f4f64d17827ea0e1ee58ccc1 rdf:first sg:person.011516505301.04
76 rdf:rest N5efa0812864241a8ba09e90798415e7e
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
81 schema:name Interdisciplinary Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1294862 schema:issn 1388-6150
84 1572-8943
85 schema:name Journal of Thermal Analysis and Calorimetry
86 rdf:type schema:Periodical
87 sg:person.011516505301.04 schema:affiliation https://www.grid.ac/institutes/grid.411768.d
88 schema:familyName Mahian
89 schema:givenName Omid
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04
91 rdf:type schema:Person
92 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
93 schema:familyName Wongwises
94 schema:givenName Somchai
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
96 rdf:type schema:Person
97 sg:person.014252566317.89 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
98 schema:familyName Saedodin
99 schema:givenName Seyfolah
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014252566317.89
101 rdf:type schema:Person
102 sg:person.015143716677.04 schema:affiliation https://www.grid.ac/institutes/grid.412475.1
103 schema:familyName Hemmat Esfe
104 schema:givenName Mohammad
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143716677.04
106 rdf:type schema:Person
107 sg:pub.10.1007/11378235_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038458897
108 https://doi.org/10.1007/11378235_1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00231-002-0382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867779
111 https://doi.org/10.1007/s00231-002-0382-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10876-013-0601-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283488
114 https://doi.org/10.1007/s10876-013-0601-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10973-012-2534-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031715389
117 https://doi.org/10.1007/s10973-012-2534-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11051-009-9657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952917
120 https://doi.org/10.1007/s11051-009-9657-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1024438603801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032513358
123 https://doi.org/10.1023/a:1024438603801
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.expthermflusci.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053317983
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatfluidflow.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035720844
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015256066
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123003
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319087
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijthermalsci.2007.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033900106
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijthermalsci.2008.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602480
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.rser.2010.11.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015566638
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.spmi.2003.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026595623
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.tca.2012.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037404806
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/i160003a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055523914
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.2093936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042044970
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2436472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016066122
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/0957-4484/19/34/345702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014205880
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreve.76.061203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736760
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/1.1571080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072311
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.2825978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085787
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.2945886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062099301
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2514/2.6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494919
164 rdf:type schema:CreativeWork
165 https://doi.org/10.2963/jjtp.7.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020649950
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.411768.d schema:alternateName Islamic Azad University, Mashhad
168 schema:name Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
171 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.412475.1 schema:alternateName Semnan University
174 schema:name Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...